
CristalX
Release 1.1.0

Zoltan Csati

May 24, 2021

GETTING STARTED

1 CristalX 3

2 Installation 5

3 Documentation 7

4 How to use the codes 9

5 A detailed workflow 11

6 Geometry and mesh processing in Salome 29

7 Processing a .med file 33

8 Algorithms 35

9 Program design 39

10 Coding conventions 41

11 Documentation 43

12 Development 45

13 Contributing 47

14 Versioning 51

15 Segmentation 53

16 Gala 57

17 Analysis 61

18 Meshing 71

19 CAD 75

20 MED 77

21 Salome 81

22 Geometry 97

i

23 Abaqus 117

24 DIC 131

25 Simulation 145

26 Utilities 153

27 Profiling 169

28 Index 171

29 Changelog 173

30 License 175

Python Module Index 179

Index 181

ii

CristalX, Release 1.1.0

Global intro

GETTING STARTED 1

CristalX, Release 1.1.0

2 GETTING STARTED

CHAPTER

ONE

CRISTALX

Identification of individual grains in microscopic images

CristalX is a Python package that helps in the analysis of polycrystalline microstructures. Its name originates from the
French word ‘cristal’, corresponding to the English word ‘crystal’.

1.1 Features

• Image segmentation to identify the grains in a microstructure

• Analysis tools for the segmented image

• Explicit geometrical representation of the grains

• Interacting with meshes created on the microstructure

• Mapping fields between a mesh and the grid of DIC measurements

• Simulation tools for the inverse problem arising from a combined numerical-experimental method (in progress
. . .)

• Visualization and data exchange

1.2 Getting help

1. Read the documentation.

2. Check the existing issues. They may already provide an answer to you question.

3. Open a new issue.

1.3 Contributing

Read the docs/source/contributing.md file.

3

https://mybinder.org/v2/gh/CsatiZoltan/CristalX/master
https://mybinder.org/v2/gh/CsatiZoltan/CristalX/master?filepath=notebooks%2Fexample_application.ipynb
https://bettercodehub.com/
https://cristalx.readthedocs.io/en/latest/?badge=latest
https://gitter.im/CristalX-community/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
https://cristalx.readthedocs.io/
https://github.com/CsatiZoltan/CristalX/issues
https://github.com/CsatiZoltan/CristalX/issues/new

CristalX, Release 1.1.0

1.4 Citing CristalX

We have an article freely available on SoftwareX, showing the background and the design of CristalX.

When using CristalX in scientific publications, please cite the following paper:

• Csati, Z.; Witz, J.-F.; Magnier, V.; Bartali, A. E.; Limodin, N. & Najjar, D. CristalX: Facilitating simulations
for experimentally obtained grain-based microstructures. SoftwareX, 2021, 14, 100669

BibTeX entry:

@Article{Csati2021,
author = {Zoltan Csati and Jean-Fran{\c{c}}ois Witz and Vincent Magnier and

→˓Ahmed El Bartali and Nathalie Limodin and Denis Najjar},
journal = {{SoftwareX}},
title = {{CristalX}: {F}acilitating simulations for experimentally obtained

→˓grain-based microstructures},
year = {2021},
month = jun,
pages = {100669},
volume = {14},
doi = {10.1016/j.softx.2021.100669},

}

4 Chapter 1. CristalX

https://doi.org/10.1016/j.softx.2021.100669

CHAPTER

TWO

INSTALLATION

CristalX is easy to install; you can get started in minutes.

2.1 Dependencies

CristalX is a written in pure Python, although it relies on packages that use other languages (mostly C and C++).
However, it is not a problem from the user’s perspective as no manual compilation is needed. Those who are interested
can see the dependencies in the environment.yml file in the root directory.

Whether you install CristalX by conda or try it online, all but one dependency is installed. In a common workflow,
that single missing dependency will not affect you. For details, see . . .

2.2 Try it online

If you just want to get a taste of CristalX, you can try it online without installing anything.

Click here to jump to the root directory. Existing Jupyter notebooks are in the notebooks/ directory. You can
modify them and create new ones. If you directly want to open the main tutorial, which describes a real-world
application, click here.

2.3 Install it locally

If you want more control (debugging, inspecting variables, etc.) over CristalX or if you wish to contribute to the
project, it is recommended to install it on your machine.

2.3.1 Obtain the source

If you are a user of CristalX, the best is to get the latest release:

• download it from GitHub

• or clone it with Git:

git clone https://github.com/CsatiZoltan/CristalX.git
cd CristalX
git checkout v<version_number>

5

https://mybinder.org/v2/gh/CsatiZoltan/CristalX/master
https://mybinder.org/v2/gh/CsatiZoltan/CristalX/master?filepath=notebooks%2Fexample_application.ipynb
https://github.com/CsatiZoltan/CristalX/releases

CristalX, Release 1.1.0

where <version_number> is the version you want to use. E.g. if you want to use version 1.0.1, you need
to type git checkout v1.0.1. See the available tags, corresponding to the published releases, for the
possibilities.

Note that in this case, you will be in a “detached HEAD” state, meaning that the HEAD does not point to a branch
but to the specific tag. Any commit you make in this state will not be associated with a branch. Therefore, if
you want to develop or contribute to CristalX, check out the master branch (see the next paragraph).

If you want to develop CristalX or simply want to have access to the latest features, you need to fetch the latest state:

• download it from GitHub

• or clone it with Git:

git clone https://github.com/CsatiZoltan/CristalX.git

2.3.2 Install with conda

All you need to have is the conda package manager. Open a terminal (or a command prompt if you are under Windows)
in the root directory and type

conda env create -f environment.yml

CristalX has been installed to a separate environment, so you can safely work inside it. Activate that environment:

conda activate CristalX

Once you have finished working with CristalX, either close the terminal or type

conda deactivate

to return to your default conda environment.

If you want to uninstall CristalX, make sure that the CristalX conda environment is not active and then

conda env remove -n CristalX

When uninstalled, conda env list will not show it.

2.3.3 Install with pip

If you do not have conda or you prefer pip, you can also install CristalX by typing

pip install -r requirements.txt

assuming that you have Python installed. It is highly recommended that you first create a new virtual environment
to make sure you do not break your Python installation. However, an important component of CristalX (functions
that rely on PythonOCC) will not be installed if you choose pip. The reason for this is that PythonOCC is not (yet)
available on PyPI.

6 Chapter 2. Installation

https://github.com/CsatiZoltan/CristalX/tags
https://github.com/CsatiZoltan/CristalX/archive/master.zip
https://docs.conda.io/en/latest/
https://github.com/tpaviot/pythonocc-core
https://pypi.org/

CHAPTER

THREE

DOCUMENTATION

The documentation for CristalX is available both locally and online. It is generated by Sphinx and consists of the
code documentation and the various guides (including the one you are currently reading). If you want to extend the
documentation, please read the corresponding section in the Developer guide.

3.1 Local documentation

It resides in the docs/ directory. Open a terminal there and type make html. The output will be written to docs/
build/. Open docs/build/html/index.html to land on the home page of the documentation.

3.2 Online documentation

For every push event, the documentation is rebuilt by Read the Docs. The latest HTML version is available on
https://cristalx.readthedocs.io/en/latest. Read the Docs is configured to build a PDF and EPUB output as well. All
three formats can be downloaded for offline use if you click on the bottom of the left sidebar. For convenience, here
are the direct links: HTML, PDF, EPUB.

3.3 Using the HTML documentation

For browsing on a computer, the HTML documentation is the most convenient and feature-rich.

The side-bar on the left provides quick navigation.

Code example boxes have two toggle buttons. Clicking on the prompt button >>> hides the prompt and the output. If
you then click on the copy icon next to it, you can copy the contents of the box, making it easy to try the code chunks
in your Python environment.

A direct link can be obtained for most sections, including the code documentation, by moving the cursor to the right

of the text and then clicking on the chain icon.

7

https://www.sphinx-doc.org
https://readthedocs.org/
https://cristalx.readthedocs.io/en/latest/
https://github.com/CsatiZoltan/CristalX/blob/master/.readthedocs.yml
https://cristalx.readthedocs.io/_/downloads/en/latest/htmlzip/
https://cristalx.readthedocs.io/_/downloads/en/latest/pdf/
https://cristalx.readthedocs.io/_/downloads/en/latest/epub/

CristalX, Release 1.1.0

When browsing the API documentation and want to look at the implementation, you can easily access the source code

by clicking on the [source] tag.

8 Chapter 3. Documentation

CHAPTER

FOUR

HOW TO USE THE CODES

If you want to get to know the classes and functions, the best is to check the API documentation. Most components
are amply documented and contain one or more examples. If you want to see them in action, check out our workflow
for a real-world application. If you are curious about the underlying algorithms, consult with the Algorithms section.

4.1 Tutorials

The tutorials are available in two forms: Python scripts and Jupyter notebooks.

4.1.1 Python scripts

The scripts are intended to be run in batch mode. They need to be run in a specific order as the subsequent scripts
rely on the output of the previous ones. These scripts are useful if you are already a bit familiar with CristalX or if
you wish to adapt the scripts to your needs. Indeed, if you intend to extend the package, the safest way is to copy the
relevant scripts and modify them. The scripts are named as run_moduleName, where moduleName is the name
of the module in the grains/ directory that the script mainly relies on. In some way, run_moduleName acts as a
demonstration of what the moduleName module is used for. The scripts are meant to be run as modules, i.e. navigate
to the root of the project and type

python -m scripts.moduleName

4.1.2 Jupyter notebooks

Almost the same workflow is available as a single Jupyter notebook, located at the nootebooks/ directory. this
allows you to interactively discover CristalX through an example. You can easily rerun parts of the code to see the
effects of the parameters, and the rich output is embedded into the same document. If you are a novice Python user or
just want to have a taste of CristalX, notebooks are the recommended way to get started.

9

CristalX, Release 1.1.0

4.2 Undo changes

When you experiment with CristalX, you will probably change parameter values. As the scripts communicate by
reading and writing data, the original data that come with CristalX will be overwritten. There are multiple ways to
undo the changes.

4.2.1 In Binder

As written in the Installation instructions, you can try CristalX online without the need to install anything on your
computer. Then a separate virtual environment is created. Whatever changes you make there, they will not influence
your local installation (if you have) or the data on the GitHub repository.

4.2.2 In a local installation

If you downloaded CristalX from GitHub, you can simply replace the new files with the original ones. In case you
cloned CristalX with Git, you can easily discard the changes you make.

10 Chapter 4. How to use the codes

CHAPTER

FIVE

A DETAILED WORKFLOW

CristalX contains several modules that facilitate experimental and numerical works on polycrystalline microstructures.
The usage of these modules is demonstrated on a complex example.

5.1 Problem formulation

Grain-based microstructures occur in nature but also develop during industrial processes. We are interested in how the
size and the distribution of grains, and the material they are made up of influence the resistance of train wheels and
axles to fatigue loading. The problem requires that

• the individual grains can be distinguished on a microscopic image

• a good quality mesh is generated on the microstructure

• the numerical solution obtained on this mesh can be compared to full-field measurements

The first two steps are discussed here.

5.2 Initial setup

First, we switch to the root directory of the project so that the package imports are consistent. Note that the relative
path always works because the current directory in case of a Jupyter notebook is always the directory in which the
notebook is.

[1]: import os
os.chdir('../')
main_dir = os.path.abspath(os.curdir)

Let us set the directory that will hold our data.

[2]: data_dir = os.path.abspath('data')
try:

os.mkdir(data_dir)
except FileExistsError:

pass

We now copy the necessary data files that come with CristalX into this freshly created directory.

[3]: from os.path import join
from shutil import copy
selected_files = ['1.png', '1_cropped.png', 'splinegons.png', '1_mesh_extended.npz']

(continues on next page)

11

CristalX, Release 1.1.0

(continued from previous page)

for file in selected_files:
copy(join('scripts/data', file), data_dir)

In interactive mode, debug information are displayed. They are not useful for presentation purposes as they pollute
the rendered output. Similarly for runtime warnings.

[4]: import logging
logging.basicConfig(level=logging.ERROR)
import warnings
warnings.simplefilter('ignore')

For the figures to be visible in this notebook, we define a utility function to scale them.

[5]: import matplotlib.pyplot as plt
def scale_figure(dpi):

plt.gcf().set_dpi(dpi)

5.3 Identify grains in a microstructure

The picture below was taken with a digital camera and shows the central part of a tensile specimen. In this section, we
will identify the individual grains in the image.

[6]: from skimage.io import imshow
imshow(join(data_dir, '1.png'))
scale_figure(150)

12 Chapter 5. A detailed workflow

CristalX, Release 1.1.0

So that the surrounding region does not interfere with the segmentation, we will work on a cropped region.

[7]: from skimage.io import imread
import numpy as np
image = join(data_dir, '1_cropped.png')

As you can see, the RGB image is represented as a 3D numpy array.

[8]: image_as_matrix = imread(image)
type(image_as_matrix), image_as_matrix.shape

[8]: (numpy.ndarray, (638, 589, 3))

However, you do not explicitly have to deal with this matrix as the Segmentation class will handle it.

The Segmentation class offers a set of methods to perform the consecutive steps of the segmentation workflow.
We pass to the constructor the path to the image to be segmented. By default, the resulting images are shown at the
end of each step. In batch mode, you probably want to set the interactive_mode optional parameter to False.
But in this interactive document, we want to see the outputs.

[9]: from grains.segmentation import Segmentation
GS = Segmentation(image)

5.3. Identify grains in a microstructure 13

CristalX, Release 1.1.0

Image successfully loaded.

After the image has been loaded and stored in the GS object, we want to remove the noise. Since the interfaces among
the grains are important for us, we use median filtering for smoothing as it preserves the contours. The smoothing
is governed by the window size. The larger this number, the smoother the processed image is, and the higher the
computational cost becomes.

[10]: filter_window_size = 5
filtered = GS.filter_image(filter_window_size)

Median filtering finished.

To improve the segmentation result later, we perform superpixel segmentation as an initial step. During this process,
the image is subdivided into superpixels, groups of pixels that belong together based on colour, spatial distance or
other properties. On this image, a superpixel algorithm called Quick Shift proved to be the best among the algorithms
available in scikit-image.

14 Chapter 5. A detailed workflow

CristalX, Release 1.1.0

[11]: segmented = GS.initial_segmentation(filtered)

Quick shift segmentation finished. Number of segments: 421

The result is indeed a segmented (also called labelled) image. Distinct positive integers, called labels, are associated
to groups of pixels in the labelled image and each pixel belongs to one and only one such group.

[12]: segmented

[12]: array([[8, 8, 8, ..., 2, 2, 2],
[8, 8, 8, ..., 2, 2, 2],
[8, 8, 8, ..., 2, 2, 2],
...,
[400, 400, 400, ..., 414, 414, 414],
[400, 400, 400, ..., 414, 414, 414],
[400, 400, 400, ..., 414, 414, 414]])

The segmented image has the same size as the original image, but it is not an RGB image any more.

[13]: segmented.shape, image_as_matrix.shape

[13]: ((638, 589), (638, 589, 3))

We can visualize a labelled image by associating different colours to the different labels.

[14]: from skimage.color import label2rgb
from numpy.random import random
nlabel = len(np.unique(segmented))
imshow(label2rgb(segmented, colors=random((nlabel, 3))))
scale_figure(150)

5.3. Identify grains in a microstructure 15

CristalX, Release 1.1.0

As the superpixel segmentation in the previous step resulted in an oversegmented image, the region adjacency graph
is constructed and used to merge some of the neighbouring superpixels based on their similarity with respect to mean
colour. Regions connected by edges with smaller weights than a prescribed threshold are combined. As you can see,
the number of supersegments decreases.

[15]: cluster_merging_threshold = 7
reduced = GS.merge_clusters(segmented, threshold=cluster_merging_threshold)

16 Chapter 5. A detailed workflow

CristalX, Release 1.1.0

Tiny clusters merged. Number of segments: 177

We need a few more steps before succesfully applying another segmentation technique to obtain the final segmented
image. First, we detect the grain boundaries. They are shown superposed on the original image.

[16]: boundary = GS.find_grain_boundaries(reduced)

Grain boundaries found.

The boundary image is a binary image in which the True values indicate the boundaries among the labelled regions.

[17]: boundary

[17]: array([[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
...,
[False, False, False, ..., False, False, False],

(continues on next page)

5.3. Identify grains in a microstructure 17

CristalX, Release 1.1.0

(continued from previous page)

[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False]])

The we use thinning on the grain boundary to obtain a single-pixel wide skeleton.

[18]: skeleton = GS.create_skeleton(boundary)

Skeleton constructed.

If the automatic segmentation carried out so far is not good enough, the user can manually edit the skeleton as a graph
in ImagePy. The combination of the automatic segmentation with human supervision is a powerful way to achieve
good results in a relatively short amount of time. Here, we stay with the automatic method.

To recover the segments again, we use watershed segmentation on the skeleton. Had it been directly applied on the
original image, the result of the watershed segmentation would have been an oversegmented image due to the noises
that act as local minima. The success of the watershed segmentation depends on how well the catchment basins are
identified, which are the locations where the flooding starts. The so-called marker-based watershed segmentation
methods rely on markers (computed automatically or given by the user), i.e. the location of the catchment basins, as
inputs. In the watershed_segmentation method of the Segmentation class, various transformations are
used to obtain a desirable outcome.

[19]: watershed = GS.watershed_segmentation(skeleton)

18 Chapter 5. A detailed workflow

https://github.com/Image-Py/imagepy

CristalX, Release 1.1.0

Watershed segmentation finished. Number of segments: 247

To the left and to the right of the central zone, artificial “grains” appear. This is not a problem, they can either be
merged, or left as it is and associate the same material to them.

5.4 Extending the image domain

The segmented image corresponds to the recrystallized part of the specimen. When we perform the traction test
numerically we need a larger domain, the boundary on which the boundary conditions are applied. The size of this
extended domain does not have to match with the physical size of the tensile specimen, but it has to be sufficiently
large so that the far-field boundary conditions do no not influence the deformation state in the central region.

As a first step, we extend the domain by padding the corresponding numpy array. Since we want to handle the added
domains (grains) on the left and on the right as separate grains, we associate different labels to them. There are about
250 grains in the central region, so choosing labels 500 and 501 ensures that these regions have unique labels.

The extended domain is constructed in such a way that it matches the region of the DIC measurements. This will be
useful when comparing the results of the simulation with the experimental data.

[20]: from grains.simulation import change_domain
extended_image = change_domain(watershed, 0.4395, 0, 0, 0, 500)
extended_image = change_domain(extended_image, 0, 0.5568, 0, 0, 501)
imshow(extended_image)
scale_figure(150)

5.4. Extending the image domain 19

CristalX, Release 1.1.0

5.5 From image to geometry

In this section, we show how to represent the grains as an explicit geometry. See our paper for the motivation.

For grain representation, we can choose between polygon and splinegon approximations. We will base the mesh-
ing on the splinegon representation, but the polygons are also shown. The high-level functions polygonize and
splinegonize wrap all the important algorithms. You can see from the code below that they share similar function
signature. The only difference is that the spline parameters can be provided to the splinegonize function.

[21]: from grains.cad import polygonize, search_neighbor, splinegonize
polygons = polygonize(extended_image, search_neighbor(2, np.inf), connectivity=1)
splinegons, _ = splinegonize(extended_image, search_neighbor(2, np.inf),
→˓connectivity=1, degree_min=3, degree_max=3, continuity='C0', tol=1)

Let us plot the grains. For polygons:

[22]: from grains.cad import plot_polygons
plot_polygons(list(polygons.values()));
scale_figure(150)

20 Chapter 5. A detailed workflow

CristalX, Release 1.1.0

Plotting the spline surfaces will bring up a window.

[23]: from grains.cad import plot_splinegons
from OCC.Display.SimpleGui import init_display
plot_splinegons(list(splinegons.values()), color=(0, 0, 1))

Layer manager created
Layer dimensions: 1024, 768

To allow reading this document statically, here is a screenshot of the window that popped up.

[24]: fig, ax = plt.subplots(dpi=500)
imshow(join(data_dir, 'splinegons.png'), ax=ax)
ax.set_axis_off()

5.5. From image to geometry 21

CristalX, Release 1.1.0

Once we have the spline surfaces, we write them to a STEP file. This allows us to edit the geometry in a CAD program
and to generate a mesh for the grains.

[25]: from grains.cad import regions2step
regions2step(list(splinegons.values()), join(data_dir, 'microstructure.stp'))

5.6 Repairing the geometry

For the sample microstructure, one grain was not identified, i.e. it contains a hole. The hole can be filled in by creating
a new grain. We have a detailed guide on how to do this.

22 Chapter 5. A detailed workflow

https://cristalx.readthedocs.io/en/latest/salome.html

CristalX, Release 1.1.0

5.7 Mesh generation

The same guide linked in the previous section continues with the mesh generation. It happens that we constructed the
conforming mesh in Salome, and then exported it to a .med file. Using the med module of CristalX, the triangular
mesh cells for each grain and the boundary nodes have been extracted. We also have a tutorial on how to process a
.med file.

5.8 Modifying the mesh

First, we obtain the mesh data that was saved using the med module.

[26]: mesh_file = join(data_dir, '1_mesh_extended.npz')
with np.load(mesh_file, allow_pickle=True) as mesh:

nodes = mesh['nodes']
elements = mesh['elements']
element_groups = mesh['element_groups']
node_groups = mesh['node_groups']

Retrieve groups, which were stored in dictionaries (https://stackoverflow.com/a/
→˓40220343/4892892)
element_groups = element_groups.item()
node_groups = node_groups.item()

The array elements contains the label of the nodes in the mesh.

[27]: elements

[27]: array([[603, 604, 4311],
[604, 19, 605],
[606, 18, 4312],
...,
[13377, 13369, 13374],
[13372, 13377, 13373],
[13373, 13370, 13372]])

The array nodes holds the coordinates of each node of the mesh.

[28]: nodes

[28]: array([[2.50000000e-01, 2.59000000e+02],
[8.00000000e+01, 2.59250000e+02],
[2.31000000e+02, 2.59250000e+02],
...,
[6.28062814e+02, 8.02235833e+02],
[6.22855688e+02, 7.95968504e+02],
[6.23756131e+02, 7.89612749e+02]])

The elements are available for each grain. For instance, grain 87 is labelled as Face_87 and it contains the following
elements.

[29]: element_groups['Face_87']

[29]: array([23231, 23232, 23233, 23234, 23235, 23236, 23237, 23238, 23239,
23240, 23241, 23242, 23243, 23244, 23245])

We mentioned earlier that some grains are artefacts of the watershed segmentation. In other words, they are outside
the recrystallized central region. Therefore, those grains along with the two extensions (that were given the labels 500

5.7. Mesh generation 23

https://cristalx.readthedocs.io/en/latest/api.html#module-grains.med
https://cristalx.readthedocs.io/en/latest/med.html
https://cristalx.readthedocs.io/en/latest/med.html

CristalX, Release 1.1.0

and 501) were merged in Salome and a single mesh was constructed on the merged region. That region contains the
most elements.

[30]: len(element_groups['homogeneous'])

[30]: 3718

To be able to prescribe boundary conditions later, the boundary nodes were also exported from Salome.

[31]: node_groups

[31]: {'bottom': array([8, 14, 448, 452, 467, 468, 470, 471, 472, 474, 475,
477, 478, 479, 480, 481, 482, 495, 496, 497, 498, 499,
557, 558, 559, 560, 561, 562, 563, 564, 565, 3673, 3674,
3675, 3676, 3706, 3707, 3708, 3839, 3840, 3841, 3842, 3851, 3852,
3861, 3862, 3863, 3864, 3865, 3866, 3867, 3874, 3880, 3881, 3882,
3883, 3884, 3885, 3886, 3887, 3888, 3895, 3896, 3897, 3914, 3915,
3922, 3923, 3924, 3925, 3926, 3930, 3931, 3932, 3933, 3943, 3944,
3945, 3951, 3952, 3953, 3954, 3955, 3956, 3957, 3958, 3959, 3960,
3961, 3962, 3963, 3964], dtype=int32),

'left': array([9, 10, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493,
494], dtype=int32),

'right': array([15, 16, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555,
556], dtype=int32),

'top': array([0, 11, 17, 20, 21, 25, 28, 33, 34, 36, 44,
45, 46, 52, 61, 63, 541, 542, 543, 544, 594, 595,

596, 597, 598, 599, 600, 601, 602, 609, 653, 654, 655,
656, 673, 674, 675, 676, 677, 678, 679, 702, 703, 704,
705, 706, 707, 724, 725, 749, 750, 751, 759, 760, 761,
762, 763, 764, 812, 813, 814, 815, 816, 817, 827, 828,
829, 830, 831, 832, 848, 849, 850, 851, 896, 897, 898,
920, 921, 1637, 1638, 1639, 1640], dtype=int32)}

Handling all these data individually is tedious. Hence, we created a mesh class that bundles them and defines opera-
tions on them. The TriMesh class is an abstraction for a triangular mesh. First, we initialize it with the elements and
the nodes that were loaded from the 1_mesh_extended.npz file.

[32]: from grains.geometry import TriMesh
mesh = TriMesh(nodes, elements)

The TriMesh class has several options to plot the mesh, for now we consider the default plotting.

[33]: mesh.plot()
scale_figure(150)

24 Chapter 5. A detailed workflow

CristalX, Release 1.1.0

Then the element and node sets are associated to the mesh object.

[34]: # Associate the element and node groups to it
for group_name, elements in element_groups.items():

mesh.create_cell_set(group_name, elements)
for group_name, nodes in node_groups.items():

mesh.create_vertex_set(group_name, nodes)

Mesh-based discretization methods often presume that the node ordering within an element is counter-clockwise. To
make sure this is the case, we explicitly enforce it.

[35]: mesh.change_vertex_numbering('ccw', inplace=True);

The mesh was created on the geometry, which was constructed based on the image, i.e. in pixel units. For the simula-
tion to be comparable with the experimental data (full-field measurement), the real size of the tensile speciment must
be given. In the first image of this notebook, you can observe a ruler. With the help of it, we set the correspondance
between the physical unit and the pixel unit: there are 29.55 pixels in 1 mm.

[36]: mesh.scale(1/29.55, inplace=True);

For convenience, we rotate the specimen so that its axis is parallel to the horizontal tensile loading.

5.8. Modifying the mesh 25

CristalX, Release 1.1.0

[37]: from math import pi
mesh.rotate(-pi/2, inplace=True);

Let us check if this is what we wanted.

[38]: mesh.plot(vertex_legends=True)
scale_figure(150)

We are satisfied with the resulting transformations, so let us save them.

[39]: np.savez_compressed(join(data_dir, '1_mesh_extended_scaled.npz'),
nodes=mesh.vertices, elements=mesh.cells,
element_groups=mesh.cell_sets, node_groups=mesh.vertex_sets)

5.9 Conclusions

We successfully obtained a good quality mesh starting from an image.

In the near future, we will solve an inverse problem to identify characteristic parameters in the constitutive model.
This optimization task requires the comparison of the numerical solution obtained on the mesh with the measured
field values acquired through digital image correlation (DIC). Some of this work is already available in the dic and
simulation modules.

This document is meant to serve as a global overview of what CristalX can be used for. Feel free to play with the
parameters to investigate their effects. The functions and classes of CristalX provide many more functionalities.
Browse the documentation to familiarize yourself with the details.

The initially created directory (data/) is now deleted.

26 Chapter 5. A detailed workflow

https://cristalx.readthedocs.io/en/latest/

CristalX, Release 1.1.0

[40]: from shutil import rmtree
try:

rmtree(data_dir)
except FileNotFoundError:

pass

5.9. Conclusions 27

CristalX, Release 1.1.0

28 Chapter 5. A detailed workflow

CHAPTER

SIX

GEOMETRY AND MESH PROCESSING IN SALOME

The cad module, as shown in the Algorithms section, allows to approximate a segmented image with planar spline
surfaces (splinegons) and those surfaces can be written to a STEP file. Now, we demonstrate on the sample mi-
crostructure how to repair the geometry and generate a conforming mesh on the splinegons. All the manipulations are
done in Salome 9.4.0.

6.1 Geometry

1. Import the geometry To import a STEP file (obtained by writing the splinegons into a STEP file), select the
Geometry module and then File -> Import -> STEP.

2. Repair the geometry

For the sample microstructure, one grain has not been identified, i.e. it contains a hole. To fill the hole, we
perform the following steps (always select the object that was created the last time):

1. Repair -> Close Contour and select the (in our sample) two boundary curves of the unidentified grain.

2. Repair -> Suppress Holes and select the two boundary curves you selected in the previous step. Salome
informs you that a face will be created in place of the hole.

3. Repair -> Limit tolerance and set the tolerance to 1e-3.

4. Repair -> Sewing and set 1e-2 for the tolerance.

3. Extract the grains We will need the mesh on each grain, therefore, we extract the grain faces by “exploding”
the microstructure using New Entity -> Explode. In the dialog box, select the sewn geometry (end result of the
geometry repairing workflow above) as Main Object and Face as Sub-shapes Type. Salome properly identifies
the 250 sub-shapes, i.e. the grains.

4. Fix the “artificial” grains

The sample microstructure describes the central part of a tensile specimen. However, to adhere to the Saint-
Venant principle, the loading is exerted further from this central zone. Hence, we created long enough regions
in the direction of the prescribed load by attaching two rectangular faces to the central region. These faces
are not precise rectangles because the boundary of the microstructure does not consist of straight segments.
Nevertheless, from now on, we will use the term rectangle to describe the extended region. To achieve perfect
matching between the rectangle and the boundary of the microstructure, one side of the rectangle must contain
the same lines as the boundary of the microstructure. The other three sides will be straight line segments.

1. We want to extract the boundary lines of the microstructure. To do that, we explode the boundary grains
into edges with New Entity -> Explode. The Main Object in the dialog box is a selected boundary grain,
and the Sub-shape Type is Edge. Do this with all the boundary grains.

2. Create the three sides of the rectangle

29

CristalX, Release 1.1.0

1. Create the four vertices of the rectangle with New Entry -> Basic -> Point. Two of these points are
the extremities of the microstructure, the other two are given such that

• the rectangle’s three sides become parallel to the coordinate axes (so that boundary conditions are
easily prescribed)

• the length of the longer side of the rectangle is long enough compared to the microstructure (we
applied a ratio of 5)

2. Connect these vertices with three lines, which forms the three sides of the rectangle: New Entity ->
Build -> Edge.

3. Create the rectangle by connecting the three line segments constructed in the previous step with the bound-
ary lines of the fourth side, obtained by exploding the boundary grains: New Entity -> Build -> Wire.

4. Delete the original “artificial” grain as it will be replaced by the new one.

5. Create the surface enclosed by the rectangle: New Entity -> Build -> Face, and select the wire created
before. Perform steps 1-5 for the other rectangle (on the other side of the microstructure) as well.

6. In order to create a conforming mesh on the whole domain (i.e. on the microstructure and on the two
rectangles), we need to create a compound surface: New Entity -> Build -> Compound and select the
grains plus the two rectangles.

7. It is not enough to create the mesh, we also need to know which elements belong to which grains. To
allow this, we explode the compound surface: select the compound object created in the previous step as
the Main Object in New Entity -> Explode. The Sub-shape Type is Face, as before.

The geometry is now impeccable, let us start meshing.

6.2 Mesh

Select the Mesh module.

1. Create the mesh

1. Choose Mesh -> Create Mesh from the menu. The geometry on which the mesh will be created is the
compound surface.

2. The mesh type in this study is Triangular and the algorithm is NETGEN 1D-2D. Choose NETGEN 2D
Parameters as a hypothesis and experiment with the settings to suit your needs. Accept the changes.

3. Choose Mesh -> Compute to generate the mesh with the chosen settings.

If you want to alter the mesh, change the hypothesis and compute the new mesh.

2. Obtain the sub-meshes for the grains

The segmented image contains regions that are not part of the recrystallized region, but they belong to the
homogeneous region. We want to handle them in the same way as the two artificial grains. We do not need to
merge the surfaces, just put them in the same element group. Therefore, we create

• a common element group for the elements lying in the homogeneous region

• one element group for each grain in the heterogeneous (recrystallized) region

using Mesh -> Create Groups from Geometry and selecting all the 250 faces of the geometry. To form a single
group for the heterogeneous region, merge the corresponding element groups in Mesh -> Union Groups. Once
done, delete the groups that were used in forming the union.

30 Chapter 6. Geometry and mesh processing in Salome

CristalX, Release 1.1.0

3. We will explicitly need to prescribe boundary conditions on the left and right sides of the rectangular domain.
For this, the nodes on those sides are collected with Mesh -> Create Group and set the Elements Type to Node.
Select the nodes on the left edge and give the node set a name. Repeat it for the nodes on the right.

4. Export the mesh Click on File -> Export -> MED file. The sub-meshes (element groups, node groups) are also
exported.

The mesh is ready for further processing. We have another guide that discusses how to handle the MED file from
within Python.

6.2. Mesh 31

CristalX, Release 1.1.0

32 Chapter 6. Geometry and mesh processing in Salome

CHAPTER

SEVEN

PROCESSING A .MED FILE

After exporting the mesh from Salome to a MED file, we may want to perform certain operations on it. The MED-
Coupling tool of Salome provides C++ and Python APIs for this purpose. However, that requires the user to

• have Salome installed as those APIs are available from the Salome kernel

• get to know the API

Moreover, it can happen that some mesh processing functionalities they may want to use does not exist. Since meshes
consisting of cells of the same type (e.g. triangles) can be represented as homogeneous and contiguous arrays, convert-
ing the mesh from MED to numpy arrays seems a reasonable choice. This is what our med module does: it provides
a thin wrapper around MEDCoupling to extract the mesh and the defined groups (cell and vertex groups) from the
MED file and convert them to numpy arrays. This way, the user who deals with numerical modelling can implement
their mesh processing algorithms based on numpy arrays, which is fast and straightforward. Furthermore, the person
who performs the CAD operations and has Salome installed, can use our med module to export the mesh to numpy
arrays so that the numerical analyst can directly work on it without having to have Salome installed and without any
knowledge on the MEDCoupling API.

If you want to know more about the implementation details, read the documentation for the med module.

7.1 Using the module

To use our med module, access to the MEDLoader module from Salome is required. In the following, we assume that
Salome has been installed and added to the path, so the command salome is available. If you

• want to use the Python REPL:

$ salome shell -- python
Python 3.6.5 (default, Dec 16 2019, 16:42:15)
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.

Now, you have access to the MEDCoupling Python API. E.g.

>>> from MEDLoader import MEDFileData

• want to use the PyCharm IDE

$ salome shell "path_to_PyCharm/bin/pycharm.sh"

This will start PyCharm. In the IDE (PyCharm in this example), set the interpreter to that of Salome’s Python.
For me, it is located at BINARIES-UB18.04/Python/bin/python3, where UB18.04 refers to the fact
that I downloaded a pre-compiled Salome binaries for Ubuntu 18.04.

To learn more about the salome command, read the manual.

33

https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/index.html
https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/index.html
https://www.salome-platform.org/downloads/current-version
https://docs.salome-platform.org/latest/tui/KERNEL/salome_command.html

CristalX, Release 1.1.0

34 Chapter 7. Processing a .med file

CHAPTER

EIGHT

ALGORITHMS

The goal of this document is to provide more low-level algorithmic details than what is given in our paper. In fact,
the material presented here is complimentary to the paper. The paper concentrates on the intuition behind the methods
and shows the high-level structure, also citing the relevant literature.

8.1 From image to geometry

It is recommended to read Section 2.3 of the paper first and then this section.

The algorithm to construct a geometrical representation out of a segmented image is complex. To reduce the complex-
ity, we created composable parts. We start with some notions below. Then the main steps of the algorithm is discussed
in the upcoming subsections.

Grains can have different representations. When represented as an image (input in our algorithm), it is a set of
pixels labelled with the same positive integer. A grain can be given different geometrical representations. It can be
the assembly of primitive shapes, usually triangles. One can also describe a grain by its boundary. For example,
piecewise linear boundary segments lead to a polygon, connecting spline curves lead to a splinegon. A grain can also
be represented as a cycle of a graph.

We make distinction between topological and geometrical data. Topological data includes connectivity, neighbour-
hood and membership information. Coordinates of points are examples for geometrical data. Separating these two
terms allows us to build abstractions in the code, making it understandable and extensible.

8.1.1 Skeleton of the image

Based on the segmented/labelled image, skan builds the skeleton network, as demonstrated on a sample image below.
The different pixel colors represent different labels.

As a preprocessing step, we create an additional labelled region that surrounds the original labelled image. The reason
is that this way, skan will create branches along the boundary of the original image, which will close the boundary
grains. It also simplifies the algorithms we will use later because the boundary interfaces can be handled in the same
way as the internal ones: every interface separates exactly two grains.

35

https://github.com/jni/skan

CristalX, Release 1.1.0

8.1.2 Which branches form a grain?

The question arises: given the branches, how to reconstruct the grains? First, let us try a graph theoretic approach. In
the example below, we want to identify the three grains denoted by roman numerals. The network of branches can be
represented as a graph, in which the vertices are the end points and the edges correspond to the branches.

Adequately selected cycles in this graph would give the grains. However, as discussed in the paper, determining the
grains based on the graph exclusively would be very challenging because of the following characteristics.

• For general microstructures, the graph contains multiple edges (see the example above), which rules out many
graph processing methods.

• Finding all the elementary cycles in the graph is too costly for graphs coming from realistic microstructures.
Even if we found all the cycles, we would need a criterion to choose which ones correspond to grains. E.g. the
cycle 6̄ − 2̄ − 3̄ − 5̄ does not encompass a single grain but the union of two grains.

• Another technique to find the correct cycles would be the minimum cycle basis. However, this basis is not
unique so there is no guarantee that we find the adequate cycles.

The solution is to use both topological and geometrical information. The skeleton is superimposed on the labelled
image (from which it was constructed by skan) and the labels around a given skeleton node or end point is detected.
Staying with the example in the first subsection, the scheme is shown below.

In the following, we describe an algorithm to find out which two grains are incident to a branch (remember that always
two grains neighbor a branch).

Algorithm

The neighbor search around every node of a branch is performed and the two most common labels are chosen. Since in
the image representation the grain is a set of pixels having the same label, the selected two labels give the neighboring
two grains to a branch.

Neighbor definitions

As described in the paper, certain scenarios necessitate to consider various neighborhood definitions. For those defini-
tions, see the documentation of the grains.utils.neighborhood function.

Going back to the first configuration in the beginning of this section, the algorithm gives the following branch-grain
connectivities.

1̄ : [I]

2̄ : [II]

3̄ : [I, II]

4̄ : [III, II]

5̄ : [I, III]

6̄ : [II, I]

Inverting this relationship gives the grain-branch connectivities:

I : [1̄, 3̄, 5̄, 6̄]

II : [2̄, 3̄, 6̄, 4̄]

III : [5̄, 4̄]

36 Chapter 8. Algorithms

functions/grains.utils.neighborhood.html

CristalX, Release 1.1.0

The grain-branch connectivities are an intermediate representation (topological-geometrical). It is independent of how
we geometrically represent a grain later.

8.1.3 Grains as oriented planar surfaces

The previous part of the reconstruction algorithm determined which branches bound a grain. In order to obtain a
surface representation of a grain, the boundary must be oriented and hence the branches must be connected in the
appropriate order. The following figure demonstrates for grain II the working of a brute-force algorithm.

The branches are interlaced based on their common junctions. The arrows show which branches follow in order. Note
that the default orientation of branches 3̄ and 4̄ needs to be swapped.

Finally, we arrive at a fully geometrical description because each grain is now given by a series of points (nodes and
end points) along its boundary.

8.1.4 Geometrical representations of grains

Now that we have a list of points, we can build two geometrical representations of a grain. In the polygon represen-
tation, the list of points are the consecutive vertices of the polygon. Their coordinates are stacked, the first vertex
being repeated to “close” the polygon. In the spline representation, the list of points on each branch act as a knots of a
B-spline. Once the bounding splines have been constructed, the planar spline surface (splinegon) is spanned by those
bounding splines.

8.1. From image to geometry 37

CristalX, Release 1.1.0

38 Chapter 8. Algorithms

CHAPTER

NINE

PROGRAM DESIGN

CristalX is not a black-box library such as BLAS, neither is a GUI-based application intended for end-users. It is
rather an easy-to-use and extensible set of Python codes that provide the basic functionalities that scientists can extend
based on their needs. The following ideas were kept in mind while writing and maintaining CristalX.

• Driven by actual needs

Only implement features that are currently used. Adding extra features requires more testing, possibly more depen-
dencies and therefore code bloat, and increases the cognitive load of the user. Instead, the emphasis is on creating a
stable minimum core library that can be easily extended according to users’ demands. Consequently, application code
is separated from the core modules.

• Build on well-established packages

We rely on the scientific Python stack: NumPy for array manipulations, SciPy for interpolation and some other com-
putations, Matplotlib for visualization and scikit-image for image processing. This ensures interoperability with other
scientific codes and that our software is hopefully bug-free.

• Minimize the dependencies

Rapid prototyping is essential in scientific code development and Python is an excellent choice to satisfy this require-
ment. At the same time, relying on fast libraries ensures that the computations are reasonably fast. The libraries
mentioned in the previous point are easy to install, often already pre-installed in certain Python distributions.

• High-quality documentation

Future contributors will benefit from the rich documentation. Python doctests are extensively used, serving both as
test cases and as examples of usage. The docstrings conform to the numpydoc style guide.

• We strive for decoupling the modules

Although part of the grains package, if the modules are independent, they can be reused in other projects too just by
copy-pasting the required functions.

• Do not overuse classes

In the prototyping phase, prefer using free functions to methods. As an idea evolves, you will naturally find data and
algorithms that belong together, and can refactor free functions into member functions of a class.

• Do not use deep hierarchies

Initially, stay away from excessive nesting to avoid fragmenting the code base. If the project grows big, you can still
refactor the code by introducing deeper hierarchies. Deep nesting causes unnecessary cognitive load and it also makes
the code more verbose at the caller’s site. Compare

import package1.package2.module

with

39

CristalX, Release 1.1.0

import package.module

• Gradually refactor code

As more and more features are added to the project, we will often find that similar tasks emerge in different contexts.
It is a good time to think about how they can be generalized and to reconsider your model. This way, you will come
up with utility functions best put into utils.py.

• Start writing code only after careful thinking

It is no point in writing code before you completely understand your problem domain you want to model. It is more
efficient to build abstractions in your head or on paper, then to split it into modular chunks, and only after that start
coding.

• Write the documentation before the code

If you document the function parameters and the return values in advance, as well as construct a doctest, you are en-
forced to think about the problem deeply and to create a good interface. Moreover, it guarantees that the documentation
is not missing (what you would anyway have to write at some point, so why not at the beginning?).

• Give doctest-compatible examples

You hit two birds with the same stone: provide an example for the user and get some confidence that your code works
as intended (at least for the particular example). As mentioned in the previous point, write them before the actual code
implementation. Doctests do not replace careful testing.

• Keep the documentation as part of your code

The problem with wiki pages is that they are version controlled in a different Git repository. It makes it longer to
change a hosting service (e.g. moving from GitHub to GitLab), you need to maintain two repositories, cannot change
the documentation and the code in the same commit, and you have to rely on the rendering capabilities of the hosting
service (e.g. GitHub cannot render math). It is therefore better to keep the documentation as part of your project in
a dedicated directory (docs/ in our case), use a documentation generator (Sphinx in our case) and host it online (on
Read the Docs in our case).

40 Chapter 9. Program design

CHAPTER

TEN

CODING CONVENTIONS

41

CristalX, Release 1.1.0

42 Chapter 10. Coding conventions

CHAPTER

ELEVEN

DOCUMENTATION

Writing documentation is necessary when you contribute to this project, either by writing code or by chang-
ing/extending the external documents. In this section, we give tips how you can write them. This is an opinionated
topic and it lays down how it is currently done. Feel free to suggest new ideas.

Whenever you write the documentation, first test it locally before pushing changes: Read the Docs spends about 1000
seconds to build the documentation.

It took me a long time to experiment with the Sphinx settings that provide the output what you can see in the ren-
dered documentation. Some notes concerning these efforts can be found in the Notes section. Another way to learn
about Sphinx documentation is by reading the source of the existing documentation. On each page of the HTML
documentation, the header contains a View page source hyperlink.

11.1 Code documentation

As shown in the figure, codes are written either as Python files or as Jupyter notebooks. With the proper extensions
(see the docs/source/conf.py file), both of them are automatically included in the documentation by Sphinx.
In what follows, we concentrate on documenting Python files.

The docstings are written in RST, following the numpydoc style, using the Napoleon Sphinx extension.

Provide doctests to demonstrate the use of the function you write and to provide minimal testing.

The line length is 100 characters, as defined in the /.editorconfig file.

11.2 External documentation

The external documentation is written in reStructuredText (RST) and in Markdown. Sphinx, by default, uses RST,
extending it with more capabilities. However, recommonmark can parse Markdown files and automatically convert
them to RST at documentation build time. This is a great help as more people are used to the simple Markdown than
to the more complex (and more capable) RST. Actually, the current document you read was also written in Markdown.
Of course, it is perfectly fine if you write the documentation exclusively in RST.

Currently, the structure of the documentation is written in RST, and most of the external documentation in Markdown.

43

https://numpydoc.readthedocs.io/en/latest/format.html
https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html
https://docs.python.org/3/library/doctest.html
https://github.com/readthedocs/recommonmark

CristalX, Release 1.1.0

44 Chapter 11. Documentation

CHAPTER

TWELVE

DEVELOPMENT

Intro . . .

12.1 General workflow

The development workflow can be followed in the following figure.

1. You write the Python source codes (.py) and the Jupyter notebooks (.ipynb) on your local machine. If you want,
you can create the documentation locally using Sphinx.

2. When a logical unit has been finished, you commit the changes with git push. This will upload the new
version of the modified files to a remote repository (currently GitHub). If you edit files in the remote repository
and you want those changes to be present in your local copy, you can use git pull. For more details on Git,
read the manual.

3. Several commit hooks are attached to the remote repository. When they detect a change, certain actions are
activated. One the one hand, the online version of the documentation, hosted on Read the Docs will be updated.
On the other hand, static analyzers will reanalyze the new version of the code. Some of them may create a pull
request based on their recommendations.

12.2 Profiling

I use Pyinstrument for profiling the code. It comes with the CristalX installation.

Otherwise, you can install it with pip install pyinstrument or by conda after the conda-forge channel has
been activated.

conda install -c conda-forge pyinstrument

As Pyinstrument has no dependencies, you can safely install it to your current environment. If you do not want to take
a risk, create a new environment. With conda, you can do e.g.

conda create -n pyinstrument python=3.7 scipy matplotlib
conda activate pyinstrument
conda install -c conda-forge pyinstrument

The profiling module provides a wrapper around Pyinstrument. Put the code you want to profile in the profile
context manager, e.g.

45

https://numpy.org/doc/stable/docs/index.html#documentation
https://git-scm.com/docs/git-pull
https://cristalx.readthedocs.io/
https://github.com/joerick/pyinstrument
https://conda-forge.org/docs/user/introduction.html#how-can-i-install-packages-from-conda-forge
https://github.com/joerick/pyinstrument/issues/102

CristalX, Release 1.1.0

>>> import random
>>> from grains.profiling import profile
>>> with profile('html') as p:
... for _ in range(1000000):
... rand_num = random.uniform(1, 2.2)

For more details see the API reference.

46 Chapter 12. Development

CHAPTER

THIRTEEN

CONTRIBUTING

CristalX is an open-source project that welcomes contributions of any kind.

13.1 What can you help in?

The major fields in which you can help are the following (in increasing complexity).

13.1.1 Use cases

If you use CristalX in your project, let us know. Parts of your code, if they are general enough to be incorporated,
could be included in CristalX. Make contact with us by opening an issue.

13.1.2 Documentation

If the documentation of some functions

• is missing

• is incomprehensible

• does not contain examples

• is not rendered properly

or if the code examples break, open a pull request. Similarly, open a pull request if the guides

• contain typos

• are incomprehensible

13.1.3 Code

• You can report bugs by opening an issue.

• If you want to help but do not know where to start, consider the currently open issues, especially the ones with
the help wanted label.

• You can implement new features. First of all, contact us if you plan to work on a non-trivial feature. This will
save work for you. Use the fork & PR workflow.

47

https://github.com/CsatiZoltan/CristalX/issues?q=is%3Aopen+is%3Aissue
https://github.com/CsatiZoltan/CristalX/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22

CristalX, Release 1.1.0

13.2 How to contribute

First, create a GitHub account. There are two ways to contribute.

13.2.1 Open an issue

To open a new issue, click on the green button on the Issues page.

13.2.2 Fork & pull request

At the moment, there are no code formatting guidelines, the best is to follow the formatting of the existing code.

1. Fork the GitHub repository by clicking on the Fork button at the top right corner.

2. Install CristalX locally by cloning your fork (git clone).

3. Create a new branch.

Do not work on the default (master) branch but create a new feature branch, e.g.

git checkout -b new_feature

4. Make your changes.

Add or modify files and regularly commit your changes to your local clone with meaningful commit messages
(git commit). Do not forget to test your code: if you do not provide unit tests, at least write doctests.

5. Push your changes to your remote fork on GitHub (git push).

6. Visit your forked repository on GitHub and click on the Pull request button. See the GitHub documentation for
details.

48 Chapter 13. Contributing

https://github.com/CsatiZoltan/CristalX/issues/new
https://github.com/CsatiZoltan/CristalX
https://chris.beams.io/posts/git-commit/
https://docs.github.com/en/free-pro-team@latest/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request-from-a-fork

CristalX, Release 1.1.0

7. Keep your fork up to date

While you work on your forked repository, changes may be committed to the original (called upstream) repos-
itory. To make sure you keep your fork up to date with the upstream repository, follow the instructions in the
GitHub documentation.

This was a basic overview, for more details check out the following documents:

• https://gist.github.com/Chaser324/ce0505fbed06b947d962

• https://github.com/susam/gitpr

13.2. How to contribute 49

https://docs.github.com/en/free-pro-team@latest/github/collaborating-with-issues-and-pull-requests/syncing-a-fork
https://gist.github.com/Chaser324/ce0505fbed06b947d962
https://github.com/susam/gitpr

CristalX, Release 1.1.0

50 Chapter 13. Contributing

CHAPTER

FOURTEEN

VERSIONING

The versioning of CristalX starts with 1.0.0 and it somewhat follows the rules of Semantic Versioning 2.0.0, with
the syntax MAJOR.MINOR.PATCH, where MAJOR introduces significant changes, MINOR comes with smaller
changes, and PATCH provides a fixture or a tiny improvement either in the code or in the documentation.

14.1 Why not SemVer?

Semantic Versioning (SemVer) is a widely used versioning scheme, applicable for public APIs. Its purpose is to be
rigorous on how to indicate when a bug fix, new features or incompatible changes in the public API are introduced.
There is an excellent discussion about it here and a detailed guide here. Many criticize it for not being indicative
about the rate of important changes. E.g. 1.8.5 –> 1.9.0 may include dozens of relevant improvements, while 1.9.5 –>
2.0.0 may merely be a simple clean-up that changes the public API. However, SemVer was never meant to be used for
software version numbers.

CristalX is not a library, but a collection of tools that operate at a high level. Most of its functions are exposed to the
user, except the ones marked with a leading underscore or two leading underscores. However, the public API would
be a subset of these functions: e.g. the functions of the utils module are exposed but they are mostly intended to be
used by other modules, not by the user. As CristalX is not a library but rather a tool for rapid prototyping, semantic
versioning would not make much sense.

14.2 Why not CalVer?

Calendar Versioning (CalVer) is an alternative to SemVer. CristalX may not come with regular changes in the future
or it will get updates at irregular intervals. We do not want to give the impression that relevant changes are introduced
linearly in time. Moreover, the changelog and the time stamp in the git commits clearly show when new releases are
published.

14.3 Our versioning

As there is no unconditionally best versioning system, we came up with our own, which seems to fit well for research
code like CristalX. The starting point is SemVer with some differences. Our versioning is intended for humans. The
MAJOR version in increased only for substantially new features. This is, of course, subjective but we want to avoid
large MAJOR version numbers as e.g. in Firefox. The guideline to follow is that the novelty of a feature makes
the MAJOR version increase, not the number of additions. Here are some examples. Assume that we are at 1.2.3.
We fixed a set of related bugs in the code: 1.2.3 –> 1.2.4. Then we implemented several functionalities to speed up
the code: 1.2.4 –> 1.3.0. A new module was created and several others were modified that allowed us to carry out
groundbreaking research: 1.3.0 –> 2.0.0. An existing algorithm was improved to handle the corner cases: 2.0.0 –>
2.1.0.

51

https://semver.org/
https://semver.org/
https://gist.github.com/jashkenas/cbd2b088e20279ae2c8e
https://www.jering.tech/articles/semantic-versioning-in-practice
https://gist.github.com/jashkenas/cbd2b088e20279ae2c8e#gistcomment-3448638
https://gist.github.com/jashkenas/cbd2b088e20279ae2c8e#gistcomment-3448638
https://calver.org/

CristalX, Release 1.1.0

Similarly to SemVer, when one of the digits increases, the ones right to it are set to zero (e.g. 1.0.1 –> 1.0.2, 1.0.3 –>
1.1.0, 1.8.6 –> 2.0.0).

We try to keep backward compatibility. Insignificant changes are postponed, and are included as part of a MINOR
release. If you often feel the need to introduce changes to the function signatures, rather add new functions and give
deprecation notices than remove or modify existing ones. This does not lead to code bloat in the long run because
deprecated syntax is removed from time to time. To mark a function, a method or a class as deprecated, import the
deprecated function from the deprecation package and follow its syntax.

The master branch of the Git repository contains the latest developments since the last published release. These
unreleased modifications are allowed to contain incompatibilities (changes in the function signatures, etc.) compared
to the latest release. This flexibility is essential for rapid prototyping in research codes like CristalX. However, these
possible incompatibilities must be fixed for the next release, see the previous paragraph.

14.3.1 Connection with the Git workflow

The version numbers are reflected in the tag names. Your normal Git workflow stays the same: commit modifications
and push them to the remote repository. When you want to mark a commit yet to be included in a certain version, type

git tag -m "Concise message" v<version_number>

where <version_number> has the form MAJOR.MINOR.PATCH. Note that it is preceded by the v letter, con-
ventionally used for tags. As an example:

git tag -m "Initial release." v1.0.0

Keep the tag message short: the detailed changes since the previous version are collected in the changelog.

The tag is pushed by

git push --tags

Whenever you publish a tag, and hence update the changelog, also create a release for that tag on GitHub. Copy the
changes the new version brings from the changelog to the description of the release. In this regard, we follow the way
of JabRef. The zipped size of CristalX is quite small, so size constraint will not be a problem on GitHub.

52 Chapter 14. Versioning

https://deprecation.readthedocs.io/en/latest/index.html#deprecation.deprecated
https://github.com/CsatiZoltan/CristalX/tags
https://github.com/CsatiZoltan/CristalX/releases
https://github.com/JabRef/jabref/releases
https://docs.github.com/en/free-pro-team@latest/github/managing-large-files/distributing-large-binaries

CHAPTER

FIFTEEN

SEGMENTATION

This module contains the Segmentation class, responsible for the image segmentation of grain-based materials (rocks,
metals, etc.)

15.1 Classes

Segmentation Segmentation of grain-based microstructures

15.1.1 grains.segmentation.Segmentation

class grains.segmentation.Segmentation(image_location, save_location=None, interac-
tive_mode=True)

Segmentation of grain-based microstructures

original_image
Matrix representing the initial, unprocessed image.

Type ndarray

save_location
Directory where the processed images are saved

Type str

__init__(image_location, save_location=None, interactive_mode=True)
Initialize the class with file paths and with some options

Parameters

• image_location (str) – Path to the image to be segmented, file extension included.

• save_location (str, optional) – Path to directory where images will be outputted. If not
given, the same directory is used where the input image is loaded from.

• interactive_mode (bool, optional) – When True, images of each image manipulation step
are plotted and details are shown in the console. Default is False.

Returns None.

53

https://docs.python.org/3/library/stdtypes.html#str

CristalX, Release 1.1.0

Methods

__init__(image_location[, save_location, . . .]) Initialize the class with file paths and with some op-
tions

create_skeleton(boundary_image) Use thinning on the grain boundary image to obtain
a single-pixel wide skeleton.

filter_image(window_size[, image_matrix]) Median filtering on an image.
find_grain_boundaries(segmented_image) Find the grain boundaries.
initial_segmentation(*args) Perform the quick shift superpixel segmentation on

an image.
merge_clusters(segmented_image[, thresh-
old])

Merge tiny superpixel clusters.

save_array(filename, array) Save an image as a numpy array.
save_image(filename, array[, is_label_image]) Save an image as a numpy array.
watershed_segmentation(skeleton) Watershed segmentation of a granular microstruc-

ture.

class grains.segmentation.Segmentation(image_location, save_location=None, interac-
tive_mode=True)

Bases: object

Segmentation of grain-based microstructures

original_image
Matrix representing the initial, unprocessed image.

Type ndarray

save_location
Directory where the processed images are saved

Type str

create_skeleton(boundary_image)
Use thinning on the grain boundary image to obtain a single-pixel wide skeleton.

Parameters boundary_image (bool ndarray) – A binary image containing the objects to be
skeletonized.

Returns skeleton (bool ndarray) – Thinned image.

filter_image(window_size, image_matrix=None)
Median filtering on an image. The median filter is useful in our case as it preserves the important borders
(i.e. the grain boundaries).

Parameters

• window_size (int) – Size of the sampling window.

• image_matrix (3D ndarray with size 3 in the third dimension, optional) – Input image to
be filtered. If not given, the original image is used.

Returns filtered_image (3D ndarray with size 3 in the third dimension) – Filtered image, output
of the median filter algorithm.

find_grain_boundaries(segmented_image)
Find the grain boundaries.

Parameters segmented_image (ndarray) – Label image, output of a segmentation.

Returns boundary (bool ndarray) – A bool ndarray, where True represents a boundary pixel.

54 Chapter 15. Segmentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

CristalX, Release 1.1.0

initial_segmentation(*args)
Perform the quick shift superpixel segmentation on an image. The quick shift algorithm is invoked with
its default parameters.

Parameters *args (3D numpy array with size 3 in the third dimension) – Input image to be
segmented. If not given, the original image is used.

Returns segment_mask (ndarray) – Label image, output of the quick shift algorithm.

merge_clusters(segmented_image, threshold=5)
Merge tiny superpixel clusters. Superpixel segmentations result in oversegmented images. Based on graph
theoretic tools, similar clusters are merged.

Parameters

• segmented_image (ndarray) – Label image, output of a segmentation.

• threshold (float, optional) – Regions connected by edges with smaller weights are com-
bined.

Returns merged_superpixels (ndarray) – The new labelled array.

save_array(filename, array)
Save an image as a numpy array. The array is saved in the standard numpy format, into the directory
determined by the save_location attribute.

Parameters

• filename (str) – The array is saved under this name, with extension .npy

• array (ndarray) – An image represented as a numpy array.

save_image(filename, array, is_label_image=False)
Save an image as a numpy array. The array is saved in the standard numpy format, into the directory
determined by the save_location attribute.

Parameters

• filename (str) – The array is saved under this name, with extension .npy

• array (ndarray) – An image represented as a numpy array.

• is_label_image (bool) – True if the array represents a labeled image.

watershed_segmentation(skeleton)
Watershed segmentation of a granular microstructure. Uses the watershed transform to label non-
overlapping grains in a cellular microstructure given by the grain boundaries.

Parameters skeleton (bool ndarray) – A binary image, the skeletonized grain boundaries.

Returns segmented (ndarray) – Label image, output of the watershed segmentation.

15.1. Classes 55

CristalX, Release 1.1.0

56 Chapter 15. Segmentation

CHAPTER

SIXTEEN

GALA

A trimmed version of the Gala project (https://github.com/janelia-flyem/gala) with some additions (new function,
added documentation for the existing ones). Gala is licensed by the Janelia Farm License: http://janelia-flyem.github.
io/janelia_farm_license.html

Copyright 2012 HHMI. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following dis-
claimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of HHMI nor the names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

16.1 Functions

imextendedmin(image, h[, connectivity]) Extended-minima transform.
hminima(a, thresh) Suppress all minima that are shallower than thresh.
imhmin(a, thresh) Suppress all minima that are shallower than thresh.
morphological_reconstruction(marker,
mask[, . . .])

Perform morphological reconstruction of the marker
into the mask.

regional_minima(a[, connectivity]) Find the regional minima in an ndarray.
complement(a)

57

https://github.com/janelia-flyem/gala
http://janelia-flyem.github.io/janelia_farm_license.html
http://janelia-flyem.github.io/janelia_farm_license.html

CristalX, Release 1.1.0

16.1.1 grains.gala_light.imextendedmin

grains.gala_light.imextendedmin(image, h, connectivity=1)
Extended-minima transform. The extended minima transform is the regional minima of the h-minima transform.
The implementation follows the MATLAB function under the same name.

Parameters

• image (ndarray) – The input array on which to perform imextendedmin.

• h (float) – Any local minima shallower than this will be flattened.

• connectivity (int, optional) – Determines which elements are considered as neighbors of
the central element. Elements up to a squared distance of connectivity from the center are
considered neighbors. If connectivity=1, no diagonal elements are neighbors.

Returns bool ndarray – True at places of the extended minima.

16.1.2 grains.gala_light.hminima

grains.gala_light.hminima(a, thresh)
Suppress all minima that are shallower than thresh.

Parameters

• a (array) – The input array on which to perform hminima.

• thresh (float) – Any local minima shallower than this will be flattened.

Returns out (array) – A copy of the input array with shallow minima suppressed.

16.1.3 grains.gala_light.imhmin

grains.gala_light.imhmin(a, thresh)
Suppress all minima that are shallower than thresh.

Parameters

• a (array) – The input array on which to perform hminima.

• thresh (float) – Any local minima shallower than this will be flattened.

Returns out (array) – A copy of the input array with shallow minima suppressed.

16.1.4 grains.gala_light.morphological_reconstruction

grains.gala_light.morphological_reconstruction(marker, mask, connectivity=1)
Perform morphological reconstruction of the marker into the mask.

See the Matlab image processing toolbox documentation for details: http://www.mathworks.com/help/toolbox/
images/f18-16264.html

58 Chapter 16. Gala

http://www.mathworks.com/help/toolbox/images/f18-16264.html
http://www.mathworks.com/help/toolbox/images/f18-16264.html

CristalX, Release 1.1.0

16.1.5 grains.gala_light.regional_minima

grains.gala_light.regional_minima(a, connectivity=1)
Find the regional minima in an ndarray. As written in the MATLAB documentation of the imregionalmin
function: “Regional minima are connected components of pixels with a constant intensity value, surrounded by
pixels with a higher value.”

16.1.6 grains.gala_light.complement

grains.gala_light.complement(a)

grains.gala_light.complement(a)

grains.gala_light.hminima(a, thresh)
Suppress all minima that are shallower than thresh.

Parameters

• a (array) – The input array on which to perform hminima.

• thresh (float) – Any local minima shallower than this will be flattened.

Returns out (array) – A copy of the input array with shallow minima suppressed.

grains.gala_light.imextendedmin(image, h, connectivity=1)
Extended-minima transform. The extended minima transform is the regional minima of the h-minima transform.
The implementation follows the MATLAB function under the same name.

Parameters

• image (ndarray) – The input array on which to perform imextendedmin.

• h (float) – Any local minima shallower than this will be flattened.

• connectivity (int, optional) – Determines which elements are considered as neighbors of
the central element. Elements up to a squared distance of connectivity from the center are
considered neighbors. If connectivity=1, no diagonal elements are neighbors.

Returns bool ndarray – True at places of the extended minima.

grains.gala_light.imhmin(a, thresh)
Suppress all minima that are shallower than thresh.

Parameters

• a (array) – The input array on which to perform hminima.

• thresh (float) – Any local minima shallower than this will be flattened.

Returns out (array) – A copy of the input array with shallow minima suppressed.

grains.gala_light.morphological_reconstruction(marker, mask, connectivity=1)
Perform morphological reconstruction of the marker into the mask.

See the Matlab image processing toolbox documentation for details: http://www.mathworks.com/help/toolbox/
images/f18-16264.html

grains.gala_light.regional_minima(a, connectivity=1)
Find the regional minima in an ndarray. As written in the MATLAB documentation of the imregionalmin
function: “Regional minima are connected components of pixels with a constant intensity value, surrounded by
pixels with a higher value.”

16.1. Functions 59

http://www.mathworks.com/help/toolbox/images/f18-16264.html
http://www.mathworks.com/help/toolbox/images/f18-16264.html

CristalX, Release 1.1.0

60 Chapter 16. Gala

CHAPTER

SEVENTEEN

ANALYSIS

This module contains the Analysis class, responsible for the analysis of segmented grain-based microstructures.

All the examples assume that the modules numpy and matplotlib.pyplot were imported as np and plt, respectively.

17.1 Classes

Analysis Analysis of grain assemblies.

17.1.1 grains.analysis.Analysis

class grains.analysis.Analysis(label_image, interactive_mode=False)
Analysis of grain assemblies.

original_image
Matrix representing the initial, unprocessed image.

Type ndarray

save_location
Directory where the processed images are saved

Type str

__init__(label_image, interactive_mode=False)
Initialize the class with file paths and with some options

Parameters

• label_image (ndarray) – Segmented image.

• interactive_mode (bool, optional) – When True, images of each image manipulation step
are plotted and details are shown in the console. Default is False.

Returns None.

61

https://docs.python.org/3/library/stdtypes.html#str

CristalX, Release 1.1.0

Methods

__init__(label_image[, interactive_mode]) Initialize the class with file paths and with some op-
tions

compute_properties() Determines relevant properties of the grains.
set_scale([pixel_per_unit]) Defines a scale for performing computations in that

unit.
show_grains([grain_property]) Display the grains, optionally with a property super-

posed.
show_properties([gui]) Displays previously computed properties of the

grains

17.2 Functions

feret_diameter(prop) Determines the maximum Feret diameter.
plot_prop(prop[, pixel_per_unit, show_axis]) Plots relevant region properties into a single figure.
plot_grain_characteristic(characteristic,
. . .)

Plots the distribution of a given grain characteristic.

show_label_image(label_image[, alpha]) Displays a labeled image.
label_image_skeleton(label_image) Skeleton of a labeled image.
thicken_skeleton(skeleton, thickness) Thickens a skeleton by morphological dilation.
label_image_apply_mask(label_image, mask,
value)

Changes parts of a labeled image to a given value.

17.2.1 grains.analysis.feret_diameter

grains.analysis.feret_diameter(prop)
Determines the maximum Feret diameter.

Parameters prop (RegionProperties) – Describes a labeled region.

Returns max_feret_diameter (float) – Maximum Feret diameter of the region.

See also:

skimage.measure.regionprops() Measure properties of labeled image regions

Examples

>>> import numpy as np
>>> from skimage.measure import regionprops
>>> image = np.ones((2,2), dtype=np.int8)
>>> prop = regionprops(image)[0]
>>> feret_diameter(prop)
2.23606797749979

62 Chapter 17. Analysis

https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.regionprops

CristalX, Release 1.1.0

17.2.2 grains.analysis.plot_prop

grains.analysis.plot_prop(prop, pixel_per_unit=1, show_axis=True)
Plots relevant region properties into a single figure. Four subfigures are created, giving the region’s

• image, its area and its center

• filled image, its area

• bounding box, its area

• convex image, its area

Parameters

• prop (RegionProperties) – Describes a labeled region.

• pixel_per_unit (float or int, optional) – Number of pixels contained in a certain unit. The
default is 1, in which case all measurements are performed in pixel units.

Returns fig (matplotlib.figure.Figure) – The figure object is returned in case further manipulations
are necessary.

17.2.3 grains.analysis.plot_grain_characteristic

grains.analysis.plot_grain_characteristic(characteristic, centers, interpolation='linear',
grid_size=(100, 100), **kwargs)

Plots the distribution of a given grain characteristic.

One way to gain insight into a grain assembly is to plot the distribution of a certain grain property in the domain
the grains occupy. In this function, for each grain, and arbitrary (scalar) quantity is associated to the center of
the grain. In case of n grains, n data points span the interpolant and the given characteristic is interpolated on a
grid of the AABB of the grain centers.

Parameters

• characteristic (ndarray) – Characteristic property, the distribution of which is sought. A
1D numpy array.

• centers (ndarray) – 2D numpy array with 2 columns, each row corresponding to a grain,
and the two columns giving the Cartesian coordinates of the grain center.

• interpolation ({‘nearest’, ‘linear’, ‘cubic’}, optional) – Type of the interpolation for creat-
ing the distribution. The default is ‘linear’.

• grid_size (tuple of int, optional) – 2-tuple, the size of the grid on which the data is interpo-
lated. The default is (100, 100).

Other Parameters

• center_marker (str, optional) – Marker indicating the center of the grains. The default is
‘P’. For a list of supported markers, see the documentation. If you do not want the centers
to be shown, choose ‘none’.

• show_axis (bool, optional) – If True, the axes are displayed. The default is False.

Returns None

See also:

scipy.interpolate.griddata()

17.2. Functions 63

https://matplotlib.org/3.2.1/gallery/lines_bars_and_markers/marker_reference.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html#scipy.interpolate.griddata

CristalX, Release 1.1.0

Notes

This function knows nothing about how the center of a grain is determined and what characteristic features
a grain has. It only performs interpolation and visualization, hence decoupling the plotting from the actual
representation of grains and their characteristics. For instance, a grain can be represented as a spline surface,
as a polygon, as an assembly of primitives (often triangles), as pixels, just to mention some typical scenarios.
Calculating the center of a grain depends on the grain representation at hand. Similarly, one can imagine various
grain characteristics, such as area, diameter, Young modulus.

Examples

Assume that the grain centers are sampled from a uniformly random distribution on the unit square.

>>> n_data = 100
>>> points = np.random.random((n_data, 2))

The quantity we want to plot has a parabolic distribution with respect to the position of the grain centers.

>>> func = lambda x, y: 1 - (x-0.5)**2 - (y-0.5)**2
>>> plot_grain_characteristic(func(points[:, 0], points[:, 1]), points, center_
→˓marker='*')
>>> plt.show()

17.2.4 grains.analysis.show_label_image

grains.analysis.show_label_image(label_image, alpha=1)
Displays a labeled image.

A random color is associated with each labeled region. If boundary pixels are present in the image, they are
plotted in black.

Parameters

• label_image (ndarray) – Labeled input image, represented as a 2D numpy array of non-
negative integers. The label 0 is assumed to denote a boundary pixel.

• alpha (float, optional) – Opacity of colorized labels. Must be within [0, 1].

Returns None

17.2.5 grains.analysis.label_image_skeleton

grains.analysis.label_image_skeleton(label_image)
Skeleton of a labeled image.

The skeleton of a labeled image is a single-pixel wide network that separates the labeled regions.

Parameters label_image (ndarray) – Labeled input image, represented as a 2D numpy array of
positive integers.

Returns ndarray – A 2D bool numpy array having the same size as label_image, where True
represents the skeleton pixels.

See also:

thicken_skeleton()

64 Chapter 17. Analysis

CristalX, Release 1.1.0

17.2.6 grains.analysis.thicken_skeleton

grains.analysis.thicken_skeleton(skeleton, thickness)
Thickens a skeleton by morphological dilation.

Parameters

• skeleton (ndarray) – Skeleton of a binary image, represented as a bool 2D numpy array.

• thickness (int) – Thickness of the resulting boundaries.

Returns ndarray – A 2D bool numpy array, where True represents the thickened skeleton.

See also:

label_image_skeleton()

17.2.7 grains.analysis.label_image_apply_mask

grains.analysis.label_image_apply_mask(label_image, mask, value)
Changes parts of a labeled image to a given value.

Convenience function, equivalent to label_image[mask] = value but the original array
label_image is not overwritten.

Parameters

• label_image (ndarray) – Labeled input image, represented as a 2D numpy array of positive
integers.

• mask (ndarray) – Boolean array of the same size as label_image, marking the pixels
that will be replaced by value.

• value (int) – The masked pixels are replaced by this value.

Returns ndarray – Copy of the input image, its selected pixels being replaced by the given value.

class grains.analysis.Analysis(label_image, interactive_mode=False)
Bases: object

Analysis of grain assemblies.

original_image
Matrix representing the initial, unprocessed image.

Type ndarray

save_location
Directory where the processed images are saved

Type str

compute_properties()
Determines relevant properties of the grains. The area of each grain is determined in the units previously
given in the set_scale method.

Parameters

• window_size (int) – Size of the sampling window.

• image_matrix (3D ndarray with size 3 in the third dimension, optional) – Input image to
be filtered. If not given, the original image is used.

17.2. Functions 65

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

CristalX, Release 1.1.0

Returns filtered_image (3D ndarray with size 3 in the third dimension) – Filtered image, output
of the median filter algorithm.

set_scale(pixel_per_unit=1)
Defines a scale for performing computations in that unit. Image measures (area, diameter, etc.) are per-
formed on a matrix corresponding to a label image. Therefore, the result of all the computations are
obtained in pixel units. It is often of interest to access the results in physical units (mm, cm, inch, etc.).
Manually converting pixels, pixel squares, etc. to pyhsical units, physical unit sqaures, etc. are tedious
and error prone. Once the conversion between a pixel and a physical unit is given, all the subsequent
calculations are performed in the desired physical unit.

Parameters pixel_per_unit (float or int or scalar ndarray, optional) – Number of pixels con-
tained in a certain unit. The default is 1, in which case all measurements are performed in
pixel units.

Returns None.

show_grains(grain_property=None)
Display the grains, optionally with a property superposed.

Parameters

grain_property ({None, ‘area’, ‘centroid’, ‘coordinate’,) – ‘equivalent_diameter’, ‘feret_diameter’, ‘label’}
optional

If not None, the selected property is shown on the grain as text.

Returns None.

show_properties(gui=False)
Displays previously computed properties of the grains

Parameters gui (bool, optional) – If true, the grain properties are shown in a GUI. If false, they
are printed to stdout. The default is False. The GUI requires the dfgui modul, which can be
obtained from https://github.com/bluenote10/PandasDataFrameGUI

Returns None.

grains.analysis.feret_diameter(prop)
Determines the maximum Feret diameter.

Parameters prop (RegionProperties) – Describes a labeled region.

Returns max_feret_diameter (float) – Maximum Feret diameter of the region.

See also:

skimage.measure.regionprops() Measure properties of labeled image regions

Examples

>>> import numpy as np
>>> from skimage.measure import regionprops
>>> image = np.ones((2,2), dtype=np.int8)
>>> prop = regionprops(image)[0]
>>> feret_diameter(prop)
2.23606797749979

grains.analysis.label_image_apply_mask(label_image, mask, value)
Changes parts of a labeled image to a given value.

66 Chapter 17. Analysis

https://github.com/bluenote10/PandasDataFrameGUI
https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.regionprops

CristalX, Release 1.1.0

Convenience function, equivalent to label_image[mask] = value but the original array
label_image is not overwritten.

Parameters

• label_image (ndarray) – Labeled input image, represented as a 2D numpy array of positive
integers.

• mask (ndarray) – Boolean array of the same size as label_image, marking the pixels
that will be replaced by value.

• value (int) – The masked pixels are replaced by this value.

Returns ndarray – Copy of the input image, its selected pixels being replaced by the given value.

grains.analysis.label_image_skeleton(label_image)
Skeleton of a labeled image.

The skeleton of a labeled image is a single-pixel wide network that separates the labeled regions.

Parameters label_image (ndarray) – Labeled input image, represented as a 2D numpy array of
positive integers.

Returns ndarray – A 2D bool numpy array having the same size as label_image, where True
represents the skeleton pixels.

See also:

thicken_skeleton()

grains.analysis.plot_grain_characteristic(characteristic, centers, interpolation='linear',
grid_size=(100, 100), **kwargs)

Plots the distribution of a given grain characteristic.

One way to gain insight into a grain assembly is to plot the distribution of a certain grain property in the domain
the grains occupy. In this function, for each grain, and arbitrary (scalar) quantity is associated to the center of
the grain. In case of n grains, n data points span the interpolant and the given characteristic is interpolated on a
grid of the AABB of the grain centers.

Parameters

• characteristic (ndarray) – Characteristic property, the distribution of which is sought. A
1D numpy array.

• centers (ndarray) – 2D numpy array with 2 columns, each row corresponding to a grain,
and the two columns giving the Cartesian coordinates of the grain center.

• interpolation ({‘nearest’, ‘linear’, ‘cubic’}, optional) – Type of the interpolation for creat-
ing the distribution. The default is ‘linear’.

• grid_size (tuple of int, optional) – 2-tuple, the size of the grid on which the data is interpo-
lated. The default is (100, 100).

Other Parameters

• center_marker (str, optional) – Marker indicating the center of the grains. The default is
‘P’. For a list of supported markers, see the documentation. If you do not want the centers
to be shown, choose ‘none’.

• show_axis (bool, optional) – If True, the axes are displayed. The default is False.

Returns None

See also:

scipy.interpolate.griddata()

17.2. Functions 67

https://matplotlib.org/3.2.1/gallery/lines_bars_and_markers/marker_reference.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html#scipy.interpolate.griddata

CristalX, Release 1.1.0

Notes

This function knows nothing about how the center of a grain is determined and what characteristic features
a grain has. It only performs interpolation and visualization, hence decoupling the plotting from the actual
representation of grains and their characteristics. For instance, a grain can be represented as a spline surface,
as a polygon, as an assembly of primitives (often triangles), as pixels, just to mention some typical scenarios.
Calculating the center of a grain depends on the grain representation at hand. Similarly, one can imagine various
grain characteristics, such as area, diameter, Young modulus.

Examples

Assume that the grain centers are sampled from a uniformly random distribution on the unit square.

>>> n_data = 100
>>> points = np.random.random((n_data, 2))

The quantity we want to plot has a parabolic distribution with respect to the position of the grain centers.

>>> func = lambda x, y: 1 - (x-0.5)**2 - (y-0.5)**2
>>> plot_grain_characteristic(func(points[:, 0], points[:, 1]), points, center_
→˓marker='*')
>>> plt.show()

grains.analysis.plot_prop(prop, pixel_per_unit=1, show_axis=True)
Plots relevant region properties into a single figure. Four subfigures are created, giving the region’s

• image, its area and its center

• filled image, its area

• bounding box, its area

• convex image, its area

Parameters

• prop (RegionProperties) – Describes a labeled region.

• pixel_per_unit (float or int, optional) – Number of pixels contained in a certain unit. The
default is 1, in which case all measurements are performed in pixel units.

Returns fig (matplotlib.figure.Figure) – The figure object is returned in case further manipulations
are necessary.

grains.analysis.show_label_image(label_image, alpha=1)
Displays a labeled image.

A random color is associated with each labeled region. If boundary pixels are present in the image, they are
plotted in black.

Parameters

• label_image (ndarray) – Labeled input image, represented as a 2D numpy array of non-
negative integers. The label 0 is assumed to denote a boundary pixel.

• alpha (float, optional) – Opacity of colorized labels. Must be within [0, 1].

Returns None

grains.analysis.thicken_skeleton(skeleton, thickness)
Thickens a skeleton by morphological dilation.

68 Chapter 17. Analysis

CristalX, Release 1.1.0

Parameters

• skeleton (ndarray) – Skeleton of a binary image, represented as a bool 2D numpy array.

• thickness (int) – Thickness of the resulting boundaries.

Returns ndarray – A 2D bool numpy array, where True represents the thickened skeleton.

See also:

label_image_skeleton()

grains.analysis.truecolor2label(color_image)
Truecolor image into labeled image.

It is often the case that you need to deal with a labeled image that was saved as a truecolor image (e.g. RGB). A
labeled region is then the set of pixels with the same colors.

Parameters color_image (ndarray) – 3D array, the first two dimensions corresponding to the image
pixels, the third one for the channels (e.g. RGB, HSV, CMYK, etc.).

Returns ndarray – Labeled image, represented as a 2D numpy array of non-negative integers.

17.2. Functions 69

CristalX, Release 1.1.0

70 Chapter 17. Analysis

CHAPTER

EIGHTEEN

MESHING

18.1 Classes

SkeletonGeometry
QuadSkeletonGeometry
TriSkeletonGeometry
FixedDict https://stackoverflow.com/a/14816446/4892892
OOF2

18.1.1 grains.meshing.SkeletonGeometry

class grains.meshing.SkeletonGeometry(leftright_periodicity, topbottom_periodicity)

abstract __init__(leftright_periodicity, topbottom_periodicity)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(leftright_periodicity, . . .) Initialize self.

18.1.2 grains.meshing.QuadSkeletonGeometry

class grains.meshing.QuadSkeletonGeometry(leftright_periodicity=False, topbot-
tom_periodicity=False)

__init__(leftright_periodicity=False, topbottom_periodicity=False)
Initialize self. See help(type(self)) for accurate signature.

71

https://stackoverflow.com/a/14816446/4892892

CristalX, Release 1.1.0

Methods

__init__([leftright_periodicity, . . .]) Initialize self.

18.1.3 grains.meshing.TriSkeletonGeometry

class grains.meshing.TriSkeletonGeometry(leftright_periodicity=False, topbot-
tom_periodicity=False, arrange-
ment='conservative')

__init__(leftright_periodicity=False, topbottom_periodicity=False, arrangement='conservative')
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([leftright_periodicity, . . .]) Initialize self.

18.1.4 grains.meshing.FixedDict

class grains.meshing.FixedDict(dictionary)
https://stackoverflow.com/a/14816446/4892892

__init__(dictionary)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(dictionary) Initialize self.

18.1.5 grains.meshing.OOF2

class grains.meshing.OOF2

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ Initialize self.
create_material(name)

Parameters name (TYPE) – DESCRIP-
TION.

create_microstructure([name]) Creates a microstructure from an image.
Continued on next page

72 Chapter 18. Meshing

https://stackoverflow.com/a/14816446/4892892

CristalX, Release 1.1.0

Table 6 – continued from previous page
create_skeleton(nelem_x, nelem_y, geome-
try)
load_pixelgroups(microstructure_file)

Parameters microstructure_file (str) –
DESCRIPTION.

materials2groups(materials[, groups])
Parameters

• materials (list of str) – DE-
SCRIPTION.

pixel2group()
read_image(label_image)
save_microstructure([name])
save_pixelgroups([name])

Parameters name (str) – DESCRIP-
TION.

show()
returns None.

write_script([name])

Attributes

script

class grains.meshing.FixedDict(dictionary)
Bases: object

https://stackoverflow.com/a/14816446/4892892

class grains.meshing.OOF2
Bases: object

create_material(name)

Parameters name (TYPE) – DESCRIPTION.

Raises Exception – DESCRIPTION.

Returns None.

create_microstructure(name=None)
Creates a microstructure from an image.

Parameters name (str, optional) – Path to the image on which the microstucture is created, file
extension included. If not given, the microstructure is given the same name as the input
image.

Raises Exception – DESCRIPTION.

Returns None.

create_skeleton(nelem_x, nelem_y, geometry, name=None)

load_pixelgroups(microstructure_file)

18.1. Classes 73

https://docs.python.org/3/library/functions.html#object
https://stackoverflow.com/a/14816446/4892892
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

CristalX, Release 1.1.0

Parameters microstructure_file (str) – DESCRIPTION.

Returns None.

materials2groups(materials, groups=None)

Parameters

• materials (list of str) – DESCRIPTION.

• groups (list of int, optional) – DESCRIPTION. The default is None.

Returns None.

pixel2group()

read_image(label_image)

save_microstructure(name=None)

save_pixelgroups(name=None)

Parameters name (str) – DESCRIPTION.

Returns None.

script = []

show()

Returns None.

write_script(name=None)

class grains.meshing.QuadSkeletonGeometry(leftright_periodicity=False, topbot-
tom_periodicity=False)

Bases: grains.meshing.SkeletonGeometry

class grains.meshing.SkeletonGeometry(leftright_periodicity, topbottom_periodicity)
Bases: abc.ABC

class grains.meshing.TriSkeletonGeometry(leftright_periodicity=False, topbot-
tom_periodicity=False, arrange-
ment='conservative')

Bases: grains.meshing.SkeletonGeometry

grains.meshing.nt
alias of grains.meshing.modules

74 Chapter 18. Meshing

https://docs.python.org/3/library/abc.html#abc.ABC

CHAPTER

NINETEEN

CAD

75

CristalX, Release 1.1.0

76 Chapter 19. CAD

CHAPTER

TWENTY

MED

Extracting and processing meshes from .med files. The functions were tested on the MEDCoupling API, version 9.4.0.

Todo: Support renumbering (https://docs.salome-platform.org/latest/dev/MEDCoupling/user/html/data_
optimization.html).

Getting help:

• This module relies on the Python interface of MEDCoupling. Click here for the latest documentation.

• User’s manual for the Python interface

• To know more about the MED file format, which is a specialization of HDF5, see the documentation. For a
discussion on the relation between the MED format and the APIS, see this page and that one.

• The definitions, such as group, used in this module are from the development guide.

• A (mostly English) tutorial for the Python interface to MEDCoupling is also useful. Particularly interesting are
the mesh manipulation examples

• Main page of the documentation

20.1 Functions

read_mesh Reads a mesh file in .med format.
get_nodes Obtains the nodes and the node groups of a mesh.
get_elements Obtains the elements for each group of a mesh.

20.1.1 grains.med.read_mesh

grains.med.read_mesh(filename)
Reads a mesh file in .med format. Only one mesh, the first one, is supported. However, that mesh can contain
groups.

Parameters filename (str) – Path to the mesh file.

Returns MEDFileUMesh – Represents an unstructured mesh. For details, see the manual on
https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/classMEDCoupling_1_
1MEDFileUMesh.html

77

https://docs.salome-platform.org/latest/dev/MEDCoupling/user/html/data_optimization.html
https://docs.salome-platform.org/latest/dev/MEDCoupling/user/html/data_optimization.html
https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/index.html
https://docs.salome-platform.org/latest/dev/MEDCoupling/user/html/index.html
https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/med-file.html
https://www.salome-platform.org/user-section/about/med
https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/library.html
https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/glossary.html
https://docs.salome-platform.org/latest/dev/MEDCoupling/tutorial/index.html
https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/medcouplingpyexamples.html#ExamplesMeshes
https://salome-platform.org/user-section/documentation/current-release
https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/classMEDCoupling_1_1MEDFileUMesh.html
https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/classMEDCoupling_1_1MEDFileUMesh.html

CristalX, Release 1.1.0

20.1.2 grains.med.get_nodes

grains.med.get_nodes(mesh)
Obtains the nodes and the node groups of a mesh.

Parameters mesh (MEDFileUMesh) – Unstructured mesh.

Returns

• nodes (ndarray) – 2D numpy array with 2 columns, each row corresponding to a node, and
the two columns giving the Cartesian coordinates of the nodes.

• node_groups (dict) – The keys in the dictionary are the node group names, while the values
are list of integers, giving the nodes that belong to the particular group.

See also:

get_elements(), getGroupArr

20.1.3 grains.med.get_elements

grains.med.get_elements(mesh, numbering='global')
Obtains the elements for each group of a mesh.

Elements of the same dimension as the mesh are collected (e.g. faces for a 2D mesh).

Todo: put those elements that do not belong to any group into an automatically created group

Todo: support ordering elements in alphabetical order

Todo: implement the ‘global’ strategy

Parameters

• mesh (MEDFileUMesh) – Unstructured mesh.

• numbering ({‘global’}, optional) –

Determines how to allocate element numbers in the mesh. ‘global’: numbers the ele-
ments without taking into account which group they belong to. Use this strategy if you
are not sure whether an element belongs to more than one group. ‘group’: numbers the
elements group-wise. This is much faster than the ‘global’ strategy, but use this option if
you are sure that the groups of the mesh do not contain common elements.

The default is ‘global’.

Returns

• elements (ndarray) – Element-node connectivities in a 2D numpy array, in which each row
corresponds to an element and the columns are the nodes of the elements. It is assumed that
all the elements have the same number of nodes.

• element_groups (dict) – The keys in the dictionary are the element group names, while the
values are list of integers, giving the elements that belong to the particular group.

78 Chapter 20. MED

https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/classMEDCoupling_1_1MEDFileMesh.html#a4398c05f015e52d0d380eb39c6e4b942

CristalX, Release 1.1.0

Warning: Currently, elements that do not fit into any groups are discarded.

See also:

get_nodes(), change_node_numbering()

Notes

The element-node connectivities are read from the mesh. If you want to change the ordering of the nodes, use
the change_node_numbering() function.

Both this and the get_nodes() function relies on getGroupsOnSpecifiedLev to obtain the groups based on a
parameter, called meshDimRelToMaxExt. This parameter designates the relative dimension of the mesh entities
whose IDs are required. If it is 1, it denotes the nodes. If 0, entities of the same dimension as the mesh are meant
(e.g. group of volumes for a 3D mesh, or group of faces for a 2D mesh). When -1, entities of spatial dimension
immediately below that of the mesh are collected (e.g. group of faces for a 3D mesh, or group of edges for a
2D mesh). For -2, entities of two dimensions below that of the mesh are fetched (e.g. group of edges for a 3D
mesh).

grains.med.get_elements(mesh, numbering='global')
Obtains the elements for each group of a mesh.

Elements of the same dimension as the mesh are collected (e.g. faces for a 2D mesh).

Todo: put those elements that do not belong to any group into an automatically created group

Todo: support ordering elements in alphabetical order

Todo: implement the ‘global’ strategy

Parameters

• mesh (MEDFileUMesh) – Unstructured mesh.

• numbering ({‘global’}, optional) –

Determines how to allocate element numbers in the mesh. ‘global’: numbers the ele-
ments without taking into account which group they belong to. Use this strategy if you
are not sure whether an element belongs to more than one group. ‘group’: numbers the
elements group-wise. This is much faster than the ‘global’ strategy, but use this option if
you are sure that the groups of the mesh do not contain common elements.

The default is ‘global’.

Returns

• elements (ndarray) – Element-node connectivities in a 2D numpy array, in which each row
corresponds to an element and the columns are the nodes of the elements. It is assumed that
all the elements have the same number of nodes.

• element_groups (dict) – The keys in the dictionary are the element group names, while the
values are list of integers, giving the elements that belong to the particular group.

20.1. Functions 79

https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/classMEDCoupling_1_1MEDFileMesh.html#a2d59097b6d14b95c7d2aeee9f39b0438

CristalX, Release 1.1.0

Warning: Currently, elements that do not fit into any groups are discarded.

See also:

get_nodes(), change_node_numbering()

Notes

The element-node connectivities are read from the mesh. If you want to change the ordering of the nodes, use
the change_node_numbering() function.

Both this and the get_nodes() function relies on getGroupsOnSpecifiedLev to obtain the groups based on a
parameter, called meshDimRelToMaxExt. This parameter designates the relative dimension of the mesh entities
whose IDs are required. If it is 1, it denotes the nodes. If 0, entities of the same dimension as the mesh are meant
(e.g. group of volumes for a 3D mesh, or group of faces for a 2D mesh). When -1, entities of spatial dimension
immediately below that of the mesh are collected (e.g. group of faces for a 3D mesh, or group of edges for a
2D mesh). For -2, entities of two dimensions below that of the mesh are fetched (e.g. group of edges for a 3D
mesh).

grains.med.get_nodes(mesh)
Obtains the nodes and the node groups of a mesh.

Parameters mesh (MEDFileUMesh) – Unstructured mesh.

Returns

• nodes (ndarray) – 2D numpy array with 2 columns, each row corresponding to a node, and
the two columns giving the Cartesian coordinates of the nodes.

• node_groups (dict) – The keys in the dictionary are the node group names, while the values
are list of integers, giving the nodes that belong to the particular group.

See also:

get_elements(), getGroupArr

grains.med.read_mesh(filename)
Reads a mesh file in .med format. Only one mesh, the first one, is supported. However, that mesh can contain
groups.

Parameters filename (str) – Path to the mesh file.

Returns MEDFileUMesh – Represents an unstructured mesh. For details, see the manual on
https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/classMEDCoupling_1_
1MEDFileUMesh.html

80 Chapter 20. MED

https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/classMEDCoupling_1_1MEDFileMesh.html#a2d59097b6d14b95c7d2aeee9f39b0438
https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/classMEDCoupling_1_1MEDFileMesh.html#a4398c05f015e52d0d380eb39c6e4b942
https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/classMEDCoupling_1_1MEDFileUMesh.html
https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/classMEDCoupling_1_1MEDFileUMesh.html

CHAPTER

TWENTYONE

SALOME

The documentation generated from this file is available on https://cristalx.readthedocs.io/en/latest/api.html#
module-grains.salome.

The aim of this module is to manage geometry and mesh operations on two-dimensional microstructures that tessellate
a domain. This has the important consequence that the domain is assumed to consist of non-overlapping shapes that
cover it. After generating a conforming mesh, each element belongs to a single group and no element exists outside the
group. More precisely, elements that do not belong to any group are not taken into account by the Mesh class. They
can still be accessed by the functions of Salome, but the use of such lower-level abstractions is against the philosophy
of encapsulation this module provides.

The non-goals of this module include everything not related to the tessellation nature of 2D microstructures. The
emphasis is on readability and not on speed.

This file can be used either as a module or as a script.

21.1 Using as a module

Developers, implementing new features, will use salome.py as a Python module. Although this module is part of
the grains package in the CristalX project, it does not rely on the other modules of grains. This ensures that it
can be used standalone and run as a script in the Salome environment. It only uses language constructs available in
Python 3.6, and external packages shipped with Salome 9.4.0 onwards. To enable debugging, code completion and
other useful development methods, consult with the documentation on . . . Most classes contain a protected variable
that holds the underlying Salome object. Unless you debug, it is not necessary to directly deal with Salome objects
programmatically.

21.2 Using as a script

When salome.py is run as a script, the contents in the if __name__ == "__main__": block is executed. Edit
it to suit your needs. Similarly to the case when used as a module, the script can only be run from Salome’s own
Python interpreter: either from the shell or from the GUI. To run it from the shell (including the GUI’s built-in Python
command prompt), type

exec(open("<path_to_CristalX>/grains/salome.py", "rb").read())

You can also execute the script from the GUI by clicking on File → Load Script. . .

81

https://cristalx.readthedocs.io/en/latest/api.html#module-grains.salome
https://cristalx.readthedocs.io/en/latest/api.html#module-grains.salome
https://github.com/CsatiZoltan/CristalX

CristalX, Release 1.1.0

21.3 Classes

Geometry Represents the geometrical entities of a two-
dimensional tessellated domain.

Face Closed part of a plane.
Edge A shape corresponding to a curve, and bounded by a

vertex at each extremity.
Interface An edge between two faces.
Mesh Performs mesh manipulations on a tessellated geometry.
FaceMesh Mesh on a face, part of the whole mesh.
InterfaceMesh Mesh on an interface, part of the whole mesh.
CohesiveZone Constructs zero-thickness elements along the interfaces.
GUI Using GUI-related functionalities in Salome.

21.3.1 grains.salome.Geometry

class grains.salome.Geometry(name='microstructure')
Represents the geometrical entities of a two-dimensional tessellated domain.

A Geometry object knows about the faces that tessellate the domain, and about the edges and interfaces that
separate the faces.

Parameters name (str, optional) – Name of the geometry.

See also:

Face, Edge, Interface

__init__(name='microstructure')
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([name]) Initialize self.
create_interfaces() Constructs unique interfaces that separate the faces.
extract_edges() Decomposes each face into edges.
extract_faces() Decomposes the geometry into faces.
load(step_file) Loads the geometry from a STEP file.

21.3.2 grains.salome.Face

class grains.salome.Face(face, name)
Closed part of a plane.

A Face knows about the Edge objects that bound it.

Parameters

• face (GEOM_Object of shape type ‘FACE’) – The main Salome object wrapped by this
class.

• name (str) – Name of the face.

82 Chapter 21. Salome

CristalX, Release 1.1.0

See also:

GEOM_Object, Shape type

__init__(face, name)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(face, name) Initialize self.

21.3.3 grains.salome.Edge

class grains.salome.Edge(edge, name)
A shape corresponding to a curve, and bounded by a vertex at each extremity.

An Edge knows about the Face it is part of, and the faces neighboring it.

Parameters

• edge (GEOM_Object of shape type ‘EDGE’) – The main Salome object wrapped by this
class.

• name (str) – Name of the edge.

See also:

GEOM_Object, Shape type

__init__(edge, name)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(edge, name) Initialize self.
length() Length of the edge.

21.3.4 grains.salome.Interface

class grains.salome.Interface(edge, name, neighboring_faces)
An edge between two faces.

Similar to an Edge, but two neighboring Face objects share a common Interface. An Interface knows
about the two faces that it separates.

Parameters

• edge (GEOM_Object of shape type ‘EDGE’) – The main Salome object wrapped by this
class.

• name (str) – Name of the interface.

• neighboring_faces (list of Face) – The two neighboring faces.

See also:

21.3. Classes 83

https://docs.salome-platform.org/latest/gui/GEOM/geompy_doc/interfaceGEOM_1_1GEOM__Object.html
https://docs.salome-platform.org/latest/gui/GEOM/geompy_doc/namespaceGEOM.html#a82a00e336c65dad4cc04b65563b26eb5
https://docs.salome-platform.org/latest/gui/GEOM/geompy_doc/interfaceGEOM_1_1GEOM__Object.html
https://docs.salome-platform.org/latest/gui/GEOM/geompy_doc/namespaceGEOM.html#a82a00e336c65dad4cc04b65563b26eb5

CristalX, Release 1.1.0

Edge, Face

__init__(edge, name, neighboring_faces)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(edge, name, neighboring_faces) Initialize self.
length() Length of the interface.

21.3.5 grains.salome.Mesh

class grains.salome.Mesh(geometry, name='Mesh')
Performs mesh manipulations on a tessellated geometry.

Parameters

• geometry (Geometry) – Geometry object on which the mesh exists.

• name (str, optional) – Name of the mesh.

See also:

Geometry , FaceMesh, InterfaceMesh

__init__(geometry, name='Mesh')
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(geometry[, name]) Initialize self.
element_edge_normal(element, edge) Outward-pointing unit normal to an element edge.
generate() Generates a mesh on the geometry.
generate_element_nodes(elements) Nodes of selected elements, returned one at a time.
incident_elements(edge[, element_type]) Searches for elements incident to an edge.
incident_face_mesh(interface_mesh) Face meshes incident to an interface mesh.
obtain_face_meshes() Retrieves the elements of the mesh on each face.
obtain_interface_meshes() Obtains the 1D interfacial mesh for each interface.
one_ring(node[, definition]) Elements around a node.
point_in_element(element, point) Checks whether a point is in an element.

21.3.6 grains.salome.FaceMesh

class grains.salome.FaceMesh(face_mesh, name, on_face)
Mesh on a face, part of the whole mesh.

Parameters

• face_mesh (smeshBuilder.Mesh.GroupOnGeom) – The main Salome object wrapped by this
class.

• name (str) – Name of the face mesh.

• on_face (Face) – Geometrical face on which this mesh exists.

84 Chapter 21. Salome

CristalX, Release 1.1.0

__init__(face_mesh, name, on_face)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(face_mesh, name, on_face) Initialize self.
elements() Retrieves the elements of the face mesh.
nodes() Retrieves the nodes of the face mesh.

21.3.7 grains.salome.InterfaceMesh

class grains.salome.InterfaceMesh(interface_mesh, name, on_interface)
Mesh on an interface, part of the whole mesh.

Parameters

• interface_mesh (smeshBuilder.Mesh.GroupOnGeom) – The main Salome object wrapped
by this class.

• name (str) – Name of the interface mesh.

• on_interface (Interface) – Interface on which this mesh exists.

__init__(interface_mesh, name, on_interface)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(interface_mesh, name, on_interface) Initialize self.
elements() Retrieves the elements of the interface mesh.
elements_by_nodes(nodes) Connecting elements to given nodes.
endpoint_nodes() Nodes at the extremities of the interface mesh.
nodes() Retrieves the nodes of the interface mesh.

21.3.8 grains.salome.CohesiveZone

class grains.salome.CohesiveZone(mesh)
Constructs zero-thickness elements along the interfaces.

Parameters mesh (Mesh) – Mesh into which the cohesive elements will be inserted.

__init__(mesh)
Initialize self. See help(type(self)) for accurate signature.

21.3. Classes 85

CristalX, Release 1.1.0

Methods

__init__(mesh) Initialize self.
create_cohesive_elements() Creates zero-thickness quadrilateral elements along

the interfaces.
decouple_faces() Decouples the face meshes along the interfaces.

21.3.9 grains.salome.GUI

class grains.salome.GUI
Using GUI-related functionalities in Salome.

Notes

A part of Salome’s GUI is exposed to Python. To get an idea of what is available, see https://docs.
salome-platform.org/latest/gui/GUI/text_user_interface.html

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ Initialize self.
assert_salome_desktop() Checks if Salome’s GUI is available, and raises an

exception if it is not.
has_desktop() Indicates if the Salome GUI is running.
show(obj[, show_only]) Shows objects in Salome’s GUI.
update_object_browser() Refreshes Salome’s object browser.
view([view]) Sets the viewpoint.

Attributes

component_map

class grains.salome.CohesiveZone(mesh)
Bases: object

Constructs zero-thickness elements along the interfaces.

Parameters mesh (Mesh) – Mesh into which the cohesive elements will be inserted.

_affected_elements(interface_mesh)
Face elements whose nodes must be renumbered when duplicating an interface mesh.

Parameters interface_mesh (InterfaceMesh) – The original interface mesh that will be dupli-
cated.

Returns elements (set) – Elements of the mesh that require node renumbering.

See also:

86 Chapter 21. Salome

https://docs.salome-platform.org/latest/gui/GUI/text_user_interface.html
https://docs.salome-platform.org/latest/gui/GUI/text_user_interface.html
https://docs.python.org/3/library/functions.html#object

CristalX, Release 1.1.0

_enrich_interfaces()

_correct_junction_nodes()
Post-processing to handle inconsistent interface nodes at the junctions.

The interface-wise creation of new edge elements in _affected_elements() may result in edge
element nodes that do not connect the opposite face element nodes on the two sides of the interface. This
function checks the edge element nodes at the junctions and renumbers them so that they hold the same
label as the face element nodes they connect to.

Returns None.

See also:

decouple_faces(), _affected_elements(), smeshBuilder.Mesh.
FindCoincidentNodesOnPart(), smeshBuilder.Mesh.ChangeElemNodes()

_enrich_interfaces()
Inserts new interface elements and nodes into the mesh.

Although Salome has built-in functionality for duplicating nodes and creating elements, even accessible
from the GUI with Modification -> Transformation -> Duplicate Nodes and/or Elements, it does not work
with multiple intersecting interfaces or for closed interfaces. The reason is that the first step of the two-step
procedure Salome performs fails in such situations. Therefore, this method uses a modified algorithm for
the first step, and then calls the second step. These steps are the following:

1. Find the elements (called affected elements) in the mesh whose node numbers need to be changed due
to the topological changes in the mesh caused by the introduction of new nodes.

2. The affected elements are fed to an existing function in Salome, which returns the 1D elements it creates
from the duplicated nodes. The new interface mesh is stored in the CohesiveZone object.

Returns None.

See also:

decouple_faces(), _affected_elements(), smeshBuilder.Mesh.
DoubleNodeElemGroups(), smeshBuilder.Mesh.MakeGroupByIds()

_generate_cohesive_element(bottom_element, top_element)
Creates a zero-thickness quadrilateral element.

Parameters

• bottom_element (int) – Edge element that will form the bottom edge of the cohesive
element.

• top_element (int) – Edge element that will form the top edge of the cohesive element. It
is assumed that the top element geometrically overlaps with the bottom element.

Returns list of int – The four nodes of the cohesive element, numbered counter-clockwise. The
node ordering adheres to the node numbering in Abaqus.

See also:

Mesh.incident_elements(), Mesh.element_edge_normal(), smeshBuilder.Mesh.
GetElemNodes(), smeshBuilder.Mesh.GetNodeXYZ()

create_cohesive_elements()
Creates zero-thickness quadrilateral elements along the interfaces.

It is necessary that the mesh has already been decoupled along the interfaces by the decouple_faces()
method. That method introduced duplicated nodes and edge elements along the interfaces. The purpose
of this method is to tie each interface (edge) element to its corresponding duplicate in order to form a

21.3. Classes 87

https://docs.salome-platform.org/latest/gui/SMESH/smeshBuilder.html#smeshBuilder.Mesh.FindCoincidentNodesOnPart
https://docs.salome-platform.org/latest/gui/SMESH/smeshBuilder.html#smeshBuilder.Mesh.FindCoincidentNodesOnPart
https://docs.salome-platform.org/latest/gui/SMESH/smeshBuilder.html#smeshBuilder.Mesh.ChangeElemNodes
https://docs.salome-platform.org/latest/gui/SMESH/smeshBuilder.html#smeshBuilder.Mesh.DoubleNodeElemGroups
https://docs.salome-platform.org/latest/gui/SMESH/smeshBuilder.html#smeshBuilder.Mesh.DoubleNodeElemGroups
https://docs.salome-platform.org/latest/gui/SMESH/smeshBuilder.html#smeshBuilder.Mesh.MakeGroupByIds
https://abaqus-docs.mit.edu/2017/English/SIMACAEELMRefMap/simaelm-r-cohesive2d.htm#simaelm-r-cohesive2d-t-nodedef1
https://docs.salome-platform.org/latest/gui/SMESH/smeshBuilder.html#smeshBuilder.Mesh.GetElemNodes
https://docs.salome-platform.org/latest/gui/SMESH/smeshBuilder.html#smeshBuilder.Mesh.GetElemNodes
https://docs.salome-platform.org/latest/gui/SMESH/smeshBuilder.html#smeshBuilder.Mesh.GetNodeXYZ

CristalX, Release 1.1.0

four-noded zero-thickness element, referred to as cohesive element. The bottom edge of the new cohesive
element corresponds to the original edge element, while its top edge is formed by the duplicated interface
edge element.

Returns cohesive_elements (list) – List of nodes that form the cohesive elements. The node
numbering follows the node ordering of Salome, which is the same as the node ordering in
Abaqus.

See also:

decouple_faces(), _generate_cohesive_element(), smeshBuilder.Mesh.
AddFace()

decouple_faces()
Decouples the face meshes along the interfaces.

The algorithm consists of two main steps. First, new interface meshes are created that overlap with the
existing ones and contain independent nodes and interface elements. In the same step, the incident face
mesh nodes are updated to reflect the topological changes. However, in this method, extra nodes are
introduced at the junctions, leading to a kinematic inconsistency. Therefore, the extraneous interface mesh
nodes are renumbered in the second step of the algorithm.

Returns None.

See also:

create_cohesive_elements()

class grains.salome.Edge(edge, name)
Bases: object

A shape corresponding to a curve, and bounded by a vertex at each extremity.

An Edge knows about the Face it is part of, and the faces neighboring it.

Parameters

• edge (GEOM_Object of shape type ‘EDGE’) – The main Salome object wrapped by this
class.

• name (str) – Name of the edge.

See also:

GEOM_Object, Shape type

length()
Length of the edge.

Returns float – Length of the edge.

See also:

geomBuilder.BasicProperties

class grains.salome.Face(face, name)
Bases: object

Closed part of a plane.

A Face knows about the Edge objects that bound it.

Parameters

• face (GEOM_Object of shape type ‘FACE’) – The main Salome object wrapped by this
class.

88 Chapter 21. Salome

https://docs.salome-platform.org/latest/gui/SMESH/connectivity.html#connectivity-page
https://abaqus-docs.mit.edu/2017/English/SIMACAEELMRefMap/simaelm-r-cohesive2d.htm#simaelm-r-cohesive2d-t-nodedef1
https://abaqus-docs.mit.edu/2017/English/SIMACAEELMRefMap/simaelm-r-cohesive2d.htm#simaelm-r-cohesive2d-t-nodedef1
https://docs.salome-platform.org/latest/gui/SMESH/smeshBuilder.html#smeshBuilder.Mesh.AddFace
https://docs.salome-platform.org/latest/gui/SMESH/smeshBuilder.html#smeshBuilder.Mesh.AddFace
https://docs.python.org/3/library/functions.html#object
https://docs.salome-platform.org/latest/gui/GEOM/geompy_doc/interfaceGEOM_1_1GEOM__Object.html
https://docs.salome-platform.org/latest/gui/GEOM/geompy_doc/namespaceGEOM.html#a82a00e336c65dad4cc04b65563b26eb5
https://docs.salome-platform.org/latest/gui/GEOM/geompy_doc/group__l2__measure.html#ga6d60abd33031977af29b8036d001bf8b
https://docs.python.org/3/library/functions.html#object

CristalX, Release 1.1.0

• name (str) – Name of the face.

See also:

GEOM_Object, Shape type

class grains.salome.FaceMesh(face_mesh, name, on_face)
Bases: object

Mesh on a face, part of the whole mesh.

Parameters

• face_mesh (smeshBuilder.Mesh.GroupOnGeom) – The main Salome object wrapped by this
class.

• name (str) – Name of the face mesh.

• on_face (Face) – Geometrical face on which this mesh exists.

elements()
Retrieves the elements of the face mesh.

Returns list of int – Elements belonging to the face mesh.

See also:

SMESH.SMESH_IDSource.GetIDs()

nodes()
Retrieves the nodes of the face mesh.

Returns list of int – Nodes belonging to the face mesh.

See also:

SMESH.SMESH_GroupBase.GetNodeIDs()

class grains.salome.GUI
Bases: object

Using GUI-related functionalities in Salome.

Notes

A part of Salome’s GUI is exposed to Python. To get an idea of what is available, see https://docs.
salome-platform.org/latest/gui/GUI/text_user_interface.html

exception SalomeNoDesktop
Bases: Exception

Raised when Salome is run without desktop, but a desktop functionality is invoked.

classmethod _get_component(obj)
Determines the component of an object.

This function maps a class of this module to the Salome module the class uses. For instance, class Face
is mapped to ‘GEOM’.

Parameters obj – Any object for which the component name is looked for.

Returns str or None – The name of the component the object belongs to. If an object of an
unsupported class is given, None is returned. For the list of supported classes, see the
component_map member of GUI class.

21.3. Classes 89

https://docs.salome-platform.org/latest/gui/GEOM/geompy_doc/interfaceGEOM_1_1GEOM__Object.html
https://docs.salome-platform.org/latest/gui/GEOM/geompy_doc/namespaceGEOM.html#a82a00e336c65dad4cc04b65563b26eb5
https://docs.python.org/3/library/functions.html#object
https://docs.salome-platform.org/latest/gui/SMESH/smesh_module.html#SMESH.SMESH_IDSource.GetIDs
https://docs.salome-platform.org/latest/gui/SMESH/smesh_module.html#SMESH.SMESH_GroupBase.GetNodeIDs
https://docs.python.org/3/library/functions.html#object
https://docs.salome-platform.org/latest/gui/GUI/text_user_interface.html
https://docs.salome-platform.org/latest/gui/GUI/text_user_interface.html
https://docs.python.org/3/library/exceptions.html#Exception

CristalX, Release 1.1.0

See also:

show()

static assert_salome_desktop()
Checks if Salome’s GUI is available, and raises an exception if it is not.

This function acts as a helper function when relying on Salome’s GUI.

Raises SalomeNoDesktop – If Salome’s GUI is not available.

component_map = {<class 'grains.salome.Geometry'>: 'GEOM', <class 'grains.salome.Face'>: 'GEOM', <class 'grains.salome.Edge'>: 'GEOM', <class 'grains.salome.Interface'>: 'GEOM', <class 'grains.salome.Mesh'>: 'SMESH', <class 'grains.salome.FaceMesh'>: 'SMESH', <class 'grains.salome.InterfaceMesh'>: 'SMESH'}

static has_desktop()
Indicates if the Salome GUI is running.

Returns bool – True if Salome’s GUI is available, False otherwise.

classmethod show(obj, show_only=False)
Shows objects in Salome’s GUI.

Todo: Support list of objects.

Parameters

• obj (iterable) – The object(s) to be shown in Salome. Objects of the following classes are
supported: Geometry, Face, Edge, Interface, Mesh, FaceMesh, InterfaceMesh.

• show_only (bool, optional) – If True, the other objects are hidden. The default value is
False.

Returns None

Raises

• SalomeNoDesktop – If Salome’s GUI is not available.

• TypeError – If obj is not an object that can be displayed.

• ValueError – If the given object does not exist in the Salome study.

Examples

For example, you can display an interface mesh and a face mesh by calling

GUI.show([interface_mesh, face_mesh])

where interface_mesh and face_mesh are InterfaceMesh and FaceMesh objects respec-
tively. This way of using the show method provides great flexibility as different types of objects can
be handled at the same time.

static update_object_browser()
Refreshes Salome’s object browser.

Only makes sense if executed with the GUI enabled.

Returns None

See also:

has_desktop()

90 Chapter 21. Salome

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

CristalX, Release 1.1.0

classmethod view(view='top')
Sets the viewpoint.

Parameters view ({‘front’, ‘back’, ‘top’, ‘bottom’, ‘left’, ‘right’}, optional) – Position from
which the scene is viewed. The default is ‘top’.

Returns None

class grains.salome.Geometry(name='microstructure')
Bases: object

Represents the geometrical entities of a two-dimensional tessellated domain.

A Geometry object knows about the faces that tessellate the domain, and about the edges and interfaces that
separate the faces.

Parameters name (str, optional) – Name of the geometry.

See also:

Face, Edge, Interface

_find_overlapping_edges()
Finds edges that are on top of each other.

Overlapping edges have the same length. Although its converse is not true in general, we will assume so.
This part of the algorithm (i.e. deciding the overlapping edges) can later be refined.

Returns overlapping_edges (list) – Each member of the list contains a list of (supposedly) two
Edge objects.

See also:

create_interfaces(), Edge.length()

static _has_smaller_ID(edges)
Selects the edge with a smaller ID.

When generating mesh with the NETGEN plugin of Salome, if several edges overlap, only the edge with
the smallest ID holds a mesh. The purpose of this function is to find the edge with the smaller ID out of
two overlapping edges.

Parameters edges (list of Edge) – List of two Edge objects.

Returns Edge – Either the first or the second element of the input list, depending on which of
them has a smaller ID.

See also:

create_interfaces()

Notes

For a detailed discussion on this highly important issue, see the corresponding forum thread.

create_interfaces()
Constructs unique interfaces that separate the faces.

Based on the edges (obtained by exploding the mesh), interfaces are created. Interfaces are unique separa-
tors of two neighboring faces. In other words,

• if the edge is a boundary edge, no interface is created,

• two neighboring faces have two overlapping edges, of which one is defined to be an interface.

21.3. Classes 91

https://docs.python.org/3/library/functions.html#object
https://www.salome-platform.org/forum/forum_11/79066443

CristalX, Release 1.1.0

It is assumed that the edges and faces of the geometry have already been obtained.

Returns None.

See also:

extract_faces(), extract_edges()

extract_edges()
Decomposes each face into edges.

This method must be called after the extract_faces() method, otherwise it has no effect.

Returns None.

See also:

extract_faces()

extract_faces()
Decomposes the geometry into faces.

Returns None.

See also:

extract_edges()

load(step_file)
Loads the geometry from a STEP file.

Parameters step_file (str) – The STEP file containing the geometry.

Returns None.

class grains.salome.Interface(edge, name, neighboring_faces)
Bases: object

An edge between two faces.

Similar to an Edge, but two neighboring Face objects share a common Interface. An Interface knows
about the two faces that it separates.

Parameters

• edge (GEOM_Object of shape type ‘EDGE’) – The main Salome object wrapped by this
class.

• name (str) – Name of the interface.

• neighboring_faces (list of Face) – The two neighboring faces.

See also:

Edge, Face

length()
Length of the interface.

Returns float – Length of the interface.

See also:

geomBuilder.BasicProperties

class grains.salome.InterfaceMesh(interface_mesh, name, on_interface)
Bases: object

Mesh on an interface, part of the whole mesh.

92 Chapter 21. Salome

https://docs.python.org/3/library/functions.html#object
https://docs.salome-platform.org/latest/gui/GEOM/geompy_doc/group__l2__measure.html#ga6d60abd33031977af29b8036d001bf8b
https://docs.python.org/3/library/functions.html#object

CristalX, Release 1.1.0

Parameters

• interface_mesh (smeshBuilder.Mesh.GroupOnGeom) – The main Salome object wrapped
by this class.

• name (str) – Name of the interface mesh.

• on_interface (Interface) – Interface on which this mesh exists.

elements()
Retrieves the elements of the interface mesh.

Returns list of int – Elements belonging to the interface mesh.

See also:

SMESH.SMESH_IDSource.GetIDs()

elements_by_nodes(nodes)
Connecting elements to given nodes.

Parameters nodes (list of int) – Nodes for which we want to find the connecting elements.

Returns list of int – Elements that are incident to the given nodes.

See also:

smeshBuilder.Mesh.GetElementsByNodes()

endpoint_nodes()
Nodes at the extremities of the interface mesh.

Returns ep_nodes (list of int) – Nodes of the end points of the interface on which the interface
mesh is defined. If the interface is open, it has two end points. When closed, the two end
points coincide and instead of the two coinciding nodes, a single node is returned.

nodes()
Retrieves the nodes of the interface mesh.

Returns list of int – Nodes belonging to the interface mesh.

See also:

SMESH.SMESH_GroupBase.GetNodeIDs()

class grains.salome.Mesh(geometry, name='Mesh')
Bases: object

Performs mesh manipulations on a tessellated geometry.

Parameters

• geometry (Geometry) – Geometry object on which the mesh exists.

• name (str, optional) – Name of the mesh.

See also:

Geometry , FaceMesh, InterfaceMesh

class ElementType
Bases: enum.Enum

Subset of the element types recognized by Salome.

This enumeration is for convenience. Only those elements of Salome are considered that are relevant for
the Mesh class.

21.3. Classes 93

https://docs.salome-platform.org/latest/gui/SMESH/smesh_module.html#SMESH.SMESH_IDSource.GetIDs
https://docs.salome-platform.org/latest/gui/SMESH/smeshBuilder.html#smeshBuilder.Mesh.GetElementsByNodes
https://docs.salome-platform.org/latest/gui/SMESH/smesh_module.html#SMESH.SMESH_GroupBase.GetNodeIDs
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/enum.html#enum.Enum

CristalX, Release 1.1.0

See also:

SMESH.ElementType

ALL

EDGE

FACE

NODE

element_edge_normal(element, edge)
Outward-pointing unit normal to an element edge.

The edge is assumed to be planar.

Parameters

• element (int) – ID of the element.

• edge (list of int) – Edge of the element for which the normal is to be found. The edge is
given by its two nodes.

Returns normal (tuple of float) – Outward-pointing unit normal.

See also:

point_in_element()

generate()
Generates a mesh on the geometry.

Todo: Do not hardcode values and explain the need for consistent orientation.

generate_element_nodes(elements)
Nodes of selected elements, returned one at a time.

Parameters elements (iterable) – Element IDs.

Yields list of int – The first entry of the list is the element ID, the remaining entries are the node
IDs of the element.

incident_elements(edge, element_type=None)
Searches for elements incident to an edge.

Parameters

• edge (list of int) – An edge of an element, given by its two nodes.

• element_type (Mesh.ElementType, optional) – Perform the search for the given element
type only.

Returns list of int – Element IDs that are incident to the given edge.

See also:

smeshBuilder.Mesh.GetNodeInverseElements()

incident_face_mesh(interface_mesh)
Face meshes incident to an interface mesh.

Todo: Use this method in _affected_elements as well.

94 Chapter 21. Salome

https://docs.salome-platform.org/latest/gui/SMESH/smesh_module.html#SMESH.ElementType
https://docs.salome-platform.org/latest/gui/SMESH/smeshBuilder.html#smeshBuilder.Mesh.GetNodeInverseElements

CristalX, Release 1.1.0

Parameters interface_mesh (InterfaceMesh) – Interface mesh for which the connecting face
meshes are sought.

Returns face_mesh (list of FaceMesh) – Face meshes incident to an interface mesh.

Raises Exception – If no face mesh is incident to the interface mesh.

obtain_face_meshes()
Retrieves the elements of the mesh on each face.

Returns None.

obtain_interface_meshes()
Obtains the 1D interfacial mesh for each interface.

Returns None.

one_ring(node, definition='connecting')
Elements around a node.

Parameters

• node (int) – Node ID for which the one-ring is searched.

• definition ({‘connecting’, ‘surrounding’}, optional) – What you mean by neighboring el-
ements. See the notes below.

Returns list – List of integers (element IDs).

Notes

One should make a distinction between elements connecting to a node and elements surrounding a node.
For a mesh with no overlapping nodes, the two definitions give the same elements. However, if multiple
nodes are located at the same geometrical point, it can happen that the incident elements are not connected
to the same node.

point_in_element(element, point)
Checks whether a point is in an element.

This method is implemented for 2D meshes only.

Parameters

• element (int) – Element of the mesh.

• point (tuple of float) – Point coordinates (x,y).

Returns bool – True if the given element contains the given point.

Raises

• Exception – If the mesh is not two-dimensional.

• ValueError – If the element does not exist in the mesh.

21.3. Classes 95

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#ValueError

CristalX, Release 1.1.0

Notes

This method calls an efficient matplotlib function to determine whether a point is in a polygon. For
alternative implementations, see this discussion.

See also:

matplotlib.path.Path.contains_point()

96 Chapter 21. Salome

https://stackoverflow.com/questions/36399381/whats-the-fastest-way-of-checking-if-a-point-is-inside-a-polygon-in-python
https://matplotlib.org/stable/api/path_api.html#matplotlib.path.Path.contains_point

CHAPTER

TWENTYTWO

GEOMETRY

This module implements computational geometry algorithms, needed for other modules.

All the examples assume that the modules numpy and matplotlib.pyplot were imported as np and plt, respectively.

22.1 Classes

Mesh Data structure for a general mesh.
TriMesh Unstructured triangular mesh.
Polygon Represents a polygon.

22.1.1 grains.geometry.Mesh

class grains.geometry.Mesh(vertices, cells)
Data structure for a general mesh.

This class by no means wants to provide intricate functionalities and does not strive to be efficient at all. Its
purpose is to give some useful features the project relies on. The two main entities in the mesh are the vertices
and the cells. They are expected to be passed by the user, so reading from various mesh files is not implemented.
This keeps the class simple, requires few package dependencies and keeps the class focused as there are powerful
tools to convert among mesh formats (see e.g. meshio).

Parameters

• vertices (ndarray) – 2D numpy array with 2 columns, each row corresponding to a vertex,
and the two columns giving the Cartesian coordinates of the vertex.

• cells (ndarray) – Cell-vertex connectivities in a 2D numpy array, in which each row corre-
sponds to a cell and the columns are the vertices of the cells. It is assumed that all the cells
have the same number of vertices.

See also:

change_vertex_numbering

97

https://github.com/nschloe/meshio

CristalX, Release 1.1.0

Notes

Although not necessary, it is highly recommended that the local vertex numbering in the cells are the same,
either clockwise or counter-clockwise. Some methods, such as get_boundary() even requires it. If you are
not sure whether the cells you provide have a consistent numbering, it is better to renumber them by calling the
change_vertex_numbering() method.

__init__(vertices, cells)

Todo: Error checking

Methods

__init__(vertices, cells)
associate_field(vertex_values[, name]) Associates a scalar, vector or tensor field to the

nodes.
create_cell_set(name, cells) Forms a group from a set of cells.
create_vertex_set(name, vertices) Forms a group from a set of vertices.
get_boundary() Extracts the boundary of the mesh.
get_edges() Constructs edge-cell connectivities of the mesh.

22.1.2 grains.geometry.TriMesh

class grains.geometry.TriMesh(vertices, cells)
Unstructured triangular mesh.

Vertices and cells are both stored as numpy arrays. This makes the simple mesh manipulations easy and provides
interoperability with the whole scientific Python stack.

Parameters

• vertices (ndarray) – 2D numpy array with 2 columns, each row corresponding to a vertex,
and the two columns giving the Cartesian coordinates of the vertex.

• cells (ndarray) – Cell-vertex connectivities in a 2D numpy array, in which each row corre-
sponds to a cell and the columns are the vertices of the cells. It is assumed that all the cells
have the same number of vertices.

__init__(vertices, cells)
Error checking

98 Chapter 22. Geometry

CristalX, Release 1.1.0

Methods

__init__(vertices, cells)
associate_field(vertex_values[, name]) Associates a scalar, vector or tensor field to the

nodes.
cell_area(cell) Computes the area of a cell.
cell_set_area(cell_set) Computes the area of a cell set.
cell_set_to_mesh(cell_set) Creates a mesh from a cell set.
change_vertex_numbering(orientation[, in-
place])

Changes cell vertex numbering.

create_cell_set(name, cells) Forms a group from a set of cells.
create_vertex_set(name, vertices) Forms a group from a set of vertices.
get_boundary() Extracts the boundary of the mesh.
get_edges() Constructs edge-cell connectivities of the mesh.
plot(*args, **kwargs) Plots the mesh.
plot_field(component, *args[, show_mesh]) Plots a field on the mesh.
rotate(angle[, point, inplace]) Rotates a 2D mesh about a given point by a given

angle.
sample_mesh(sample[, param]) Provides sample meshes.
scale(factor[, inplace]) Scales the geometry by modifying the coordinates of

the vertices.
write_inp(filename) Writes the mesh to an Abaqus .inp file.

Attributes

plot_options

22.1.3 grains.geometry.Polygon

class grains.geometry.Polygon(vertices)
Represents a polygon.

This class works as expected as long as the given polygon is simple, i.e. it is not self-intersecting and does not
contain holes.

A simple class that has numpy and matplotlib (for the visualization) as the only dependencies. It does not want
to provide extensive functionalities (for those, check out Shapely). The polygon is represented by its vertices,
given in a consecutive order.

Parameters vertices (ndarray) – 2D numpy array with 2 columns, each row corresponding to a
vertex, and the two columns giving the Cartesian coordinates of the vertex.

Raises

• Exception – If all the vertices of the polygon lie along the same line. If the polygon is
not given in R^2.

• ValueError – If the polygon does not have at least 3 vertices.

22.1. Classes 99

https://github.com/Toblerity/Shapely
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#ValueError

CristalX, Release 1.1.0

Examples

Try to give a “polygon”, in which all vertices are collinear

>>> poly = Polygon(np.array([[0, 0], [1, 1], [2, 2]]))
Traceback (most recent call last):
...
Exception: All vertices are collinear. Not a valid polygon.

Now we give a valid polygon:

>>> pentagon = Polygon(np.array([[2, 1], [0, 0], [0.5, 3], [-1, 4], [3, 5]]))

Use Python’s print function to display basic information about a polygon:

>>> print(pentagon)
A non-convex polygon with 5 vertices, oriented clockwise.

__init__(vertices)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(vertices) Initialize self.
area() Signed area of the polygon.
centroid() Centroid of the polygon.
diameter([definition]) Diameter of the polygon.
is_convex() Decides whether the polygon is convex.
orientation() Orientation of the polygon.
plot(*args, **kwargs) Plots the polygon.

Attributes

plot_options

22.2 Functions

is_collinear(points[, tol]) Decides whether a set of points is collinear.
squared_distance(x, y) Squared Euclidean distance between two points.
distance_matrix(points) A symmetric square matrix, containing the pairwise

squared Euclidean distances among points.
_polygon_area(x, y) Computes the signed area of a non-self-intersecting,

possibly concave, polygon.

100 Chapter 22. Geometry

CristalX, Release 1.1.0

22.2.1 grains.geometry.is_collinear

grains.geometry.is_collinear(points, tol=None)
Decides whether a set of points is collinear.

Works in any dimensions.

Parameters

• points (ndarray) – 2D numpy array with N columns, each row corresponding to a point, and
the N columns giving the Cartesian coordinates of the point.

• tol (float, optional) – Tolerance value passed to numpy’s matrix_rank function. This toler-
ance gives the threshold below which SVD values are considered zero.

Returns bool – True for collinear points.

See also:

numpy.linalg.matrix_rank()

Notes

The algorithm for three points is from Tim Davis.

Examples

Two points are always collinear

>>> is_collinear(np.array([[1, 0], [1, 5]]))
True

Three points in 3D which are supposed to be collinear (returns false due to numerical error)

>>> is_collinear(np.array([[0, 0, 0], [1, 1, 1], [5, 5, 5]]), tol=0)
False

The previous example with looser tolerance

>>> is_collinear(np.array([[0, 0, 0], [1, 1, 1], [5, 5, 5]]), tol=1e-14)
True

22.2.2 grains.geometry.squared_distance

grains.geometry.squared_distance(x, y)
Squared Euclidean distance between two points.

For points 𝑥(𝑥1, ..., 𝑥𝑛) and 𝑦(𝑦1, ...𝑦𝑛) the following metric is computed
𝑛∑︁

𝑖=1

(𝑥𝑖 − 𝑦𝑖)
2

Parameters x, y (ndarray) – 1D numpy array, containing the coordinates of the two points.

Returns float – Squared Euclidean distance.

See also:

distance_matrix()

22.2. Functions 101

https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_rank.html#numpy.linalg.matrix_rank
https://nl.mathworks.com/matlabcentral/discussions/b-loren/127448-loren-on-the-art-of-matlab-collinearity/21239#reply_21239

CristalX, Release 1.1.0

Examples

>>> squared_distance(np.array([0, 0, 0]), np.array([1, 1, 1]))
3.0

22.2.3 grains.geometry.distance_matrix

grains.geometry.distance_matrix(points)
A symmetric square matrix, containing the pairwise squared Euclidean distances among points.

Parameters points (ndarray) – 2D numpy array with 2 columns, each row corresponding to a point,
and the two columns giving the Cartesian coordinates of the points.

Returns dm (ndarray) – Distance matrix.

See also:

squared_distance()

Examples

>>> points = np.array([[1, 1], [3, 0], [-1, -1]])
>>> distance_matrix(points)
array([[0., 5., 8.],

[5., 0., 17.],
[8., 17., 0.]])

22.2.4 grains.geometry._polygon_area

grains.geometry._polygon_area(x, y)
Computes the signed area of a non-self-intersecting, possibly concave, polygon.

Directly taken from http://rosettacode.org/wiki/Shoelace_formula_for_polygonal_area#Python

Parameters x, y (list) – Coordinates of the consecutive vertices of the polygon.

Returns float – Area of the polygon.

Warning: If numpy vectors are passed as inputs, the resulting area is incorrect! WHY?

Notes

The code is not optimized for speed and for numerical stability. Intended to be used to compute the area of
finite element cells, in which case the numerical stability is not an issue (unless the cell is degenerate). As this
function is called possibly as many times as the number of cells in the mesh, no input checking is performed.

102 Chapter 22. Geometry

http://rosettacode.org/wiki/Shoelace_formula_for_polygonal_area#Python

CristalX, Release 1.1.0

Examples

>>> _polygon_area([0, 1, 1], [0, 0, 1])
0.5

class grains.geometry.Mesh(vertices, cells)
Bases: abc.ABC

Data structure for a general mesh.

This class by no means wants to provide intricate functionalities and does not strive to be efficient at all. Its
purpose is to give some useful features the project relies on. The two main entities in the mesh are the vertices
and the cells. They are expected to be passed by the user, so reading from various mesh files is not implemented.
This keeps the class simple, requires few package dependencies and keeps the class focused as there are powerful
tools to convert among mesh formats (see e.g. meshio).

Parameters

• vertices (ndarray) – 2D numpy array with 2 columns, each row corresponding to a vertex,
and the two columns giving the Cartesian coordinates of the vertex.

• cells (ndarray) – Cell-vertex connectivities in a 2D numpy array, in which each row corre-
sponds to a cell and the columns are the vertices of the cells. It is assumed that all the cells
have the same number of vertices.

See also:

change_vertex_numbering

Notes

Although not necessary, it is highly recommended that the local vertex numbering in the cells are the same,
either clockwise or counter-clockwise. Some methods, such as get_boundary() even requires it. If you are
not sure whether the cells you provide have a consistent numbering, it is better to renumber them by calling the
change_vertex_numbering() method.

static _ismatrix(array)
Decides whether the input is a matrix.

Parameters array (ndarray) – Numpy array to be checked.

Returns bool – True if the input is a 2D array. Otherwise, False.

See also:

_isvector()

static _isvector(array)
Decides whether the input is a vector.

Parameters array (ndarray) – Numpy array to be checked.

Returns bool – True if the input is a 1D array or if it is a column or row vector. Otherwise,
False.

See also:

_ismatrix()

associate_field(vertex_values, name='field')
Associates a scalar, vector or tensor field to the nodes.

22.2. Functions 103

https://docs.python.org/3/library/abc.html#abc.ABC
https://github.com/nschloe/meshio

CristalX, Release 1.1.0

Only one field can be present at a time. If you want to use a new field, call this method again with the new
field values, which will replace the previous ones.

Parameters

• vertex_values (ndarray) – Field values at the nodes.

• name (str, optional) – Name of the field. If not given, it will be ‘field’.

Returns None

create_cell_set(name, cells)
Forms a group from a set of cells.

Parameters

• name (str) – Name of the cell set.

• cells (list) – List of cells to be added to the set.

Returns None

create_vertex_set(name, vertices)
Forms a group from a set of vertices.

Parameters

• name (str) – Name of the vertex set.

• vertices (list) – List of vertices to be added to the set.

get_boundary()
Extracts the boundary of the mesh.

It is expected that all the cells have the same orientation, i.e. the cell vertices are consistently numbered
(either clockwise or counter-clockwise). See the constructor for details.

Returns

• boundary_vertices (ndarray) – Ordered 1D ndarray of vertices, the boundary vertices of
the mesh.

• boundary_edges (dict) – The keys of the returned dictionary are 2-tuples, representing
the two vertices of the boundary edges, while the values are the list of cells containing a
particular boundary edge. The dictionary is ordered: the consecutive keys represent the
consecutive boundary edges. Although a boundary edge is part of a single cell, that cell
is given in a list so as to maintain the same format as the one used in the get_edges()
method.

Notes

The reason why consistent cell vertex numbering is demanded is because in that case the boundary edges
are oriented in such a way that the second vertex of a boundary edge is the first vertex of the boundary
edge it connects to.

104 Chapter 22. Geometry

CristalX, Release 1.1.0

Examples

Let us consider the same example mesh as the one described in the get_edges() method.

>>> mesh = TriMesh(np.array([[0, 0], [1, 0], [2, 0], [0, 2], [0, 1], [1, 1]]),
... np.array([[0, 1, 5], [4, 5, 3], [5, 4, 0], [2, 5, 1]]))

We extract the boundary of that mesh using

>>> bnd_vertices, bnd_edges = mesh.get_boundary()
>>> bnd_vertices
array([0, 1, 2, 5, 3, 4])
>>> bnd_edges
{(0, 1): [0], (1, 2): [3], (2, 5): [3], (5, 3): [1], (3, 4): [1], (4, 0): [2]}

get_edges()
Constructs edge-cell connectivities of the mesh.

The cells of the mesh do not necessarily have to have a consistent vertex numbering.

Returns edges (dict) – The keys of the returned dictionary are 2-tuples, representing the two
vertices of the edges, while the values are the list of cells containing a particular edge.

Notes

We traverse through the cells of the mesh, and within each cell the edges. The edges are stored as new
entries in a dictionary if they are not already stored. Checking if a key exists in a dictionary is performed
in O(1). The number of edges in a cell is independent of the mesh density. Therefore, the time complexity
of the algorithm is O(N), where N is the number of cells in the mesh.

See also:

get_boundary()

Examples

We show an example for a triangular mesh (as the Mesh class is abstract).

>>> mesh = TriMesh(np.array([[0, 0], [1, 0], [2, 0], [0, 2], [0, 1], [1, 1]]),
... np.array([[0, 1, 5], [4, 5, 3], [5, 4, 0], [2, 5, 1]]))
>>> edges = mesh.get_edges()
>>> edges
{(0, 1): [0], (1, 5): [0, 3], (5, 0): [0, 2], (4, 5): [1, 2], (5, 3): [1],
(3, 4): [1], (4, 0): [2], (2, 5): [3], (1, 2): [3]}
>>> mesh.plot(cell_labels=True, vertex_labels=True)
>>> plt.show()

class grains.geometry.Polygon(vertices)
Bases: object

Represents a polygon.

This class works as expected as long as the given polygon is simple, i.e. it is not self-intersecting and does not
contain holes.

A simple class that has numpy and matplotlib (for the visualization) as the only dependencies. It does not want
to provide extensive functionalities (for those, check out Shapely). The polygon is represented by its vertices,
given in a consecutive order.

22.2. Functions 105

https://docs.python.org/3/library/functions.html#object
https://github.com/Toblerity/Shapely

CristalX, Release 1.1.0

Parameters vertices (ndarray) – 2D numpy array with 2 columns, each row corresponding to a
vertex, and the two columns giving the Cartesian coordinates of the vertex.

Raises

• Exception – If all the vertices of the polygon lie along the same line. If the polygon is
not given in R^2.

• ValueError – If the polygon does not have at least 3 vertices.

Examples

Try to give a “polygon”, in which all vertices are collinear

>>> poly = Polygon(np.array([[0, 0], [1, 1], [2, 2]]))
Traceback (most recent call last):
...
Exception: All vertices are collinear. Not a valid polygon.

Now we give a valid polygon:

>>> pentagon = Polygon(np.array([[2, 1], [0, 0], [0.5, 3], [-1, 4], [3, 5]]))

Use Python’s print function to display basic information about a polygon:

>>> print(pentagon)
A non-convex polygon with 5 vertices, oriented clockwise.

area()
Signed area of the polygon.

The signed area is computed by the shoelace formula1

𝐴 =
1

2

𝑁∑︁
𝑖=1

(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

Returns float – Signed area.

References

Examples

>>> poly = Polygon(np.array([[0, 0], [1, 0], [1, 1], [-1, 1]]))
>>> poly.area()
1.5
>>> poly = Polygon(np.array([[-1, 1], [1, 1], [1, 0], [0, 0]]))
>>> poly.area()
-1.5

centroid()
Centroid of the polygon.

1 http://paulbourke.net/geometry/polygonmesh/centroid.pdf

106 Chapter 22. Geometry

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#ValueError
http://paulbourke.net/geometry/polygonmesh/centroid.pdf

CristalX, Release 1.1.0

The centroid is computed according to the following formula2

𝐶𝑥 =
1

6𝐴

𝑁∑︁
𝑖=1

(𝑥𝑖 + 𝑥𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝐶𝑦 =
1

6𝐴

𝑁∑︁
𝑖=1

(𝑦𝑖 + 𝑦𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

where 𝐴 is the signed area determined by the area() method and 𝑥𝑖, 𝑦𝑖 are the vertex coordinates with
𝑥𝑁+1 = 𝑥1 and 𝑦𝑁+1 = 𝑦1.

Returns tuple – 2-tuple, the coordinates of the centroid.

References

Examples

>>> poly = Polygon(np.array([[0, 0], [0, 1], [1, 1], [1, 0]]))
>>> poly.centroid()
(0.5, 0.5)
>>> poly = Polygon(np.array([[2, 1], [0, 0], [0.5, 3], [-1, 4], [3, 5]]))
>>> poly.centroid()
(1.254..., 2.807...)

diameter(definition='set')
Diameter of the polygon.

Multiple definitions are supported for the diameter:

• Diameter of a set. The polygon is considered as a set 𝐴 of points comprised

of the polygon vertices. Let (𝑋, 𝑑) be a metric space. The diameter of the set is defined as

diam(𝐴) = sup{𝑑(𝑥, 𝑦) | 𝑥, 𝑦 ∈ 𝐴}. (22.1)

Here, the Euclidean metric is used.

• Equivalent diameter. Diameter of the circle of the same area as that of the polygon.

Parameters definition ({‘set’, ‘equivalent’}, optional) – The default is ‘set’.

Returns float – Diameter of the polygon, based on the chosen definition.

Notes

When definition is ‘set’, computing the diameter by (22.1) is equivalent to determining the distance
of the furthest points in the convex hull of 𝐴. Therefore, the diameter will always be the distance between
two points on the convex hull of 𝐴. Then for each vertex of the hull finding which other hull vertex is
farthest away from it, the rotating caliper algorithm can be used. Our brute-force method is simpler as
it needs neither the convex hull nor the rotating caliper algorithm: all the pairwise distances among the
polygon vertices are computed and the largest one is chosen. Pair of points a maximum distance apart.
Since the polygons in our applications do not have that many vertices, this simplistic approach is a viable
alternative.

2 http://paulbourke.net/geometry/polygonmesh/centroid.pdf

22.2. Functions 107

https://cs.stackexchange.com/questions/23646/why-are-the-two-farthest-points-vertices-of-the-convex-hull
http://paulbourke.net/geometry/polygonmesh/centroid.pdf

CristalX, Release 1.1.0

Examples

>>> poly = Polygon(np.array([[2, 5], [0, 1], [4, 3], [4, 5]]))
>>> poly.diameter('set')
5.6568542...
>>> poly.diameter('equivalent')
3.1915382...
>>> poly = Polygon(np.array([[2, 1], [3, -4], [-1, -1], [-4, -2], [-3, 0]]))
>>> poly.diameter('set')
7.2801098...
>>> poly.diameter('equivalent')
4.2967398...

is_convex()
Decides whether the polygon is convex.

Returns bool – True if the polygon is convex. False otherwise.

Notes

The algorithm works by checking if all pairs of consecutive edges in the polygon are either all clockwise
or all counter-clockwise oriented. This method is valid only for simple polygons. The implementation
follows this code, extended for the case when two consecutive edges are collinear. If the polygon was not
simple, a more complicated algorithm would be needed, see e.g. here.

Examples

A triangle is always convex:

>>> poly = Polygon(np.array([[1, 1], [0, 1], [0, 0]]))
>>> poly.is_convex()
True

Let us define a concave deltoid:

>>> poly = Polygon(np.array([[-1, -1], [0, 1], [1, -1], [0, 5]]))
>>> poly.is_convex()
False

Give a polygon that has two collinear edges:

>>> poly = Polygon(np.array([[0.5, 0], [1, 0], [1, 1], [0, 1], [0, 0]]))
>>> poly.is_convex()
True

orientation()
Orientation of the polygon.

Returns str – ‘cw’ if the polygon has clockwise orientation, ‘ccw’ if counter-clockwise.

plot(*args, **kwargs)
Plots the polygon.

Parameters ax (matplotlib.axes.Axes, optional) – The Axes instance the polygon resides in. The
default is None, in which case a new Axes within a new figure is created.

Other Parameters

108 Chapter 22. Geometry

https://github.com/crm416/point-location/blob/01b5c0f2105237e7108730d0e0db6213c0aadfbf/geo/shapes.py#L168
https://stackoverflow.com/a/45372025/4892892

CristalX, Release 1.1.0

• show_axes (bool, optional) – If True, the coordinate system is shown. The default is True.

• vertex_labels (bool, optional) – If True, vertex labels are shown. The default is False.

• args, kwargs (optional) – Additional arguments and keyword arguments to be specified.
Those arguments are the ones supported by matplotlib.axes.Axes.plot().

Returns None

Examples

Consider the pentagon used in the example of the constructor. Plot it in black with red diamond symbols
representing its vertices. Moreover, display the vertex numbers and do not show the coordinate system.

>>> pentagon = Polygon(np.array([[2, 1], [0, 0], [0.5, 3], [-1, 4], [3, 5]]))
>>> pentagon.plot('k-d', vertex_labels=True, markerfacecolor='r', show_
→˓axes=False)
>>> plt.show()

plot_options = {'ax': None, 'show_axes': True, 'vertex_labels': False}

class grains.geometry.TriMesh(vertices, cells)
Bases: grains.geometry.Mesh

Unstructured triangular mesh.

Vertices and cells are both stored as numpy arrays. This makes the simple mesh manipulations easy and provides
interoperability with the whole scientific Python stack.

Parameters

• vertices (ndarray) – 2D numpy array with 2 columns, each row corresponding to a vertex,
and the two columns giving the Cartesian coordinates of the vertex.

• cells (ndarray) – Cell-vertex connectivities in a 2D numpy array, in which each row corre-
sponds to a cell and the columns are the vertices of the cells. It is assumed that all the cells
have the same number of vertices.

cell_area(cell)
Computes the area of a cell.

Parameters cell (int) – Cell label.

Returns area (float) – Area of the cell.

See also:

cell_set_area()

cell_set_area(cell_set)
Computes the area of a cell set.

Parameters cell_set (str) – Name of the cell set.

Returns area (float) – Area of the cell set.

See also:

cell_area()

cell_set_to_mesh(cell_set)
Creates a mesh from a cell set.

22.2. Functions 109

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html#matplotlib.axes.Axes.plot

CristalX, Release 1.1.0

The cell orientation is preserved. I.e. if the cells had a consistent orientation (clockwise or counter-
clockwise), the cells of the new mesh inherit this property.

Parameters cell_set (str) – Name of the cell set being used to construct the new mesh. The cell
set must be present in the cell_sets member variable of the current mesh object.

Returns TriMesh – A new TriMesh object, based on the selected cell set of the original mesh.

Notes

The implementation is based on https://stackoverflow.com/a/13572640/4892892.

Examples

>>> mesh = TriMesh(np.array([[0, 0], [1, 0], [0, 1], [1, 1]]),
... np.array([[0, 1, 2], [1, 3, 2]]))
>>> mesh.create_cell_set('set', [1])
>>> new_mesh = mesh.cell_set_to_mesh('set')
>>> new_mesh.cells # note that the vertices have been relabelled
array([[0, 2, 1]])
>>> new_mesh.vertices
array([[1, 0],

[0, 1],
[1, 1]])

>>> new_mesh.plot(cell_labels=True, vertex_labels=True)
>>> plt.show()

change_vertex_numbering(orientation, inplace=False)
Changes cell vertex numbering.

Parameters

• orientation ({‘ccw’, ‘cw’}) – Vertex numbering within a cell, either ‘ccw’ (counter-
clockwise, default) or ‘cw’ (clock-wise).

• inplace (bool, optional) – If True, the vertex ordering is updated in the mesh object. The
default is False.

Returns reordered_cells (ndarray) – Same format as the cells member variable, with the
requested vertex ordering.

Notes

Supposed to be used with planar P1 or Q1 finite s.

Examples

>>> mesh = TriMesh(np.array([[1, 1], [3, 5], [7,3]]), np.array([0, 1, 2]))
>>> mesh.change_vertex_numbering('ccw')
array([[2, 1, 0]])

plot(*args, **kwargs)
Plots the mesh.

110 Chapter 22. Geometry

https://stackoverflow.com/a/13572640/4892892

CristalX, Release 1.1.0

Parameters ax (matplotlib.axes.Axes, optional) – The Axes instance the mesh resides in. The
default is None, in which case a new Axes within a new figure is created.

Other Parameters

• cell_sets, vertex_sets (bool, optional) – If True, the cell/vertex sets (if exist) are high-
lighted in random colors. The default is True.

• cell_legends, vertex_legends (bool, optional) – If True, cell/vertex set legends are shown.
The default is False. For many sets, it is recommended to leave these options as False,
otherwise the plotting becomes very slow.

• cell_labels, vertex_labels (bool, optional) – If True, cell/vertex labels are shown. The
default is False. Recommended to be left False in case of many cells/vertices. Cell labels
are positioned in the centroids of the cells.

• args, kwargs (optional) – Additional arguments and keyword arguments to be specified.
Those arguments are the ones supported by matplotlib.axes.Axes.plot().

Returns None

Notes

If you do not want to plot the cells, only the vertices, pass the '.' option, e.g.:

mesh.plot('k.')

to plot the vertices in black. Here, mesh is a TriMesh object.

Examples

A sample mesh is constructed by creating uniformly randomly distributed points on the rectangular domain
[-1, 1] x [1, 2]. These points will constitute the vertices of the mesh, while its cells are the Delaunay
triangles on the vertices.

>>> from grains.geometry import TriMesh
>>> msh = TriMesh(*TriMesh.sample_mesh(1))

The cells are drawn in greeen, in 3 points of line width, and the vertices of the mesh are shown in blue.

>>> msh.plot('go-', linewidth=3, markerfacecolor='b', vertex_labels=True)
>>> plt.show()

Notes

The plotting is done by calling triplot(), which internally makes a deep copy of the triangles. This
increases the memory usage in case of many elements.

plot_field(component, *args, show_mesh=True, **kwargs)
Plots a field on the mesh.

The aim of this method is to support basic post-processing for finite element visualization. Only the basic
contour plot type is available. For vector or tensor fields, the components to be plotted must be chosen.
For faster and more comprehensive plotting capabilities, turn to well-established scientific visualization
software, such as ParaView or Mayavi. Another limitation of the plot_field() method is that field
values are assumed to be associated to the vertices of the mesh, which restricts us to 𝑃1 Lagrange elements.

22.2. Functions 111

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html#matplotlib.axes.Axes.plot
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.triplot.html#matplotlib.pyplot.triplot
https://www.paraview.org
http://docs.enthought.com/mayavi/mayavi/

CristalX, Release 1.1.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

1.2

1.4

1.6

1.8

2.0
0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16
17

18

19

20

21
22

23
24

25
26

27

28
29

30
31

32
33

34

3536

37

38

39

40

41

42

43

44

45

46 47

48

49

50
51

52

53
54

55

56
57

58

59

60

61

62
63

64 65

66

67

68

69

70

71

72

73

74

75

76

77
78

79
80

81

82
83

84 85

86

87

88

89

90

91

92 93

94

95

96
97

98

99

112 Chapter 22. Geometry

CristalX, Release 1.1.0

Parameters

• component (int) – Positive integer, the selected component of the field to be plotted. Com-
ponents are indexed from 0.

• show_mesh (bool, optional) – If True, the underlying mesh is shown. The default is True.

• ax (matplotlib.axes.Axes, optional) – The Axes instance the plot resides in. The default is
None, in which case a new Axes within a new figure is created.

Other Parameters See them described in the :meth:`plot` method.

Returns None

See also:

plot()

Examples

The following example considers the same type of mesh as in the example shown for plot().

>>> msh = TriMesh(*TriMesh.sample_mesh(1))

We pretend that the field is an analytical function, evaluated at the vertices.

>>> field = lambda x, y: 1 - (x + y**2) * np.sign(x)
>>> field = field(msh.vertices[:, 0], msh.vertices[:, 1])

We associate this field to the mesh and plot it with and without the mesh

>>> msh.associate_field(field, 'analytical field')
>>> _, (ax1, ax2) = plt.subplots(1, 2)
>>> msh.plot_field(0, 'bo-', ax=ax1, linewidth=1, markerfacecolor='k')
>>> msh.plot_field(0, ax=ax2, show_mesh=False)
>>> plt.show()

plot_options = {'ax': None, 'cell_labels': False, 'cell_legends': False, 'cell_sets': True, 'vertex_labels': False, 'vertex_legends': False, 'vertex_sets': True}

rotate(angle, point=(0, 0), inplace=False)
Rotates a 2D mesh about a given point by a given angle.

Parameters

• angle (float) – Angle of rotation, in radians.

• point (list or tuple, optional) – Coordinates of the point about which the mesh is rotated.
If not given, it is the origin.

• inplace (bool, optional) – If True, the vertex positions are updated in the mesh object. The
default is False.

Returns rotated_vertices (ndarray) – Same format as the vertices member variable, with
the requested rotation.

22.2. Functions 113

CristalX, Release 1.1.0

Notes

Rotating a point 𝑃 given by its coordinates in the global coordinate system as 𝑃 (𝑥, 𝑦) around a point
𝐴(𝑥, 𝑦) by an angle 𝛼 is done as follows.

1. The coordinates of 𝑃 in the local coordinate system, the origin of which is 𝐴, is expressed as

𝑃 (𝑥′, 𝑦′) = 𝑃 (𝑥, 𝑦) −𝐴(𝑥, 𝑦).

2. The rotation is performed in the local coordinate system as 𝑃 ′(𝑥′, 𝑦′) = 𝑅𝑃 (𝑥′, 𝑦′), where 𝑅 is the
rotation matrix:

𝑅 =

(︂
cos𝛼 − sin𝛼
sin𝛼 cos𝛼

)︂
.

3. The rotated point 𝑃 ′ is expressed in the original (global) coordinate system:

𝑃 ′(𝑥, 𝑦) = 𝑃 ′(𝑥′, 𝑦′) + 𝐴(𝑥, 𝑦).

static sample_mesh(sample, param=100)
Provides sample meshes.

Parameters

• sample (int) – Integer, giving the sample mesh to be considered. Possibilities:

• param – Parameters to the sample meshes. Possibilities:

Returns

• nodes (ndarray) – 2D numpy array with 2 columns, each row corresponding to a vertex,
and the two columns giving the Cartesian coordinates of the vertices.

• cells (ndarray) – Cell-vertex connectivity in a 2D numpy array, in which each row corre-
sponds to a cell and the columns are the vertices of the cells. It is assumed that all the cells
have the same number of vertices.

scale(factor, inplace=False)
Scales the geometry by modifying the coordinates of the vertices.

Parameters

• factor (float) – Each vertex coordinate is multiplied by this non-negative number.

• inplace (bool, optional) – If True, the vertex positions are updated in the mesh object. The
default is False.

Returns None.

write_inp(filename)
Writes the mesh to an Abaqus .inp file.

Parameters filename (str) – Path to the mesh file.

Returns None

grains.geometry._polygon_area(x, y)
Computes the signed area of a non-self-intersecting, possibly concave, polygon.

Directly taken from http://rosettacode.org/wiki/Shoelace_formula_for_polygonal_area#Python

Parameters x, y (list) – Coordinates of the consecutive vertices of the polygon.

Returns float – Area of the polygon.

114 Chapter 22. Geometry

http://rosettacode.org/wiki/Shoelace_formula_for_polygonal_area#Python

CristalX, Release 1.1.0

Warning: If numpy vectors are passed as inputs, the resulting area is incorrect! WHY?

Notes

The code is not optimized for speed and for numerical stability. Intended to be used to compute the area of
finite element cells, in which case the numerical stability is not an issue (unless the cell is degenerate). As this
function is called possibly as many times as the number of cells in the mesh, no input checking is performed.

Examples

>>> _polygon_area([0, 1, 1], [0, 0, 1])
0.5

grains.geometry.distance_matrix(points)
A symmetric square matrix, containing the pairwise squared Euclidean distances among points.

Parameters points (ndarray) – 2D numpy array with 2 columns, each row corresponding to a point,
and the two columns giving the Cartesian coordinates of the points.

Returns dm (ndarray) – Distance matrix.

See also:

squared_distance()

Examples

>>> points = np.array([[1, 1], [3, 0], [-1, -1]])
>>> distance_matrix(points)
array([[0., 5., 8.],

[5., 0., 17.],
[8., 17., 0.]])

grains.geometry.is_collinear(points, tol=None)
Decides whether a set of points is collinear.

Works in any dimensions.

Parameters

• points (ndarray) – 2D numpy array with N columns, each row corresponding to a point, and
the N columns giving the Cartesian coordinates of the point.

• tol (float, optional) – Tolerance value passed to numpy’s matrix_rank function. This toler-
ance gives the threshold below which SVD values are considered zero.

Returns bool – True for collinear points.

See also:

numpy.linalg.matrix_rank()

22.2. Functions 115

https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_rank.html#numpy.linalg.matrix_rank

CristalX, Release 1.1.0

Notes

The algorithm for three points is from Tim Davis.

Examples

Two points are always collinear

>>> is_collinear(np.array([[1, 0], [1, 5]]))
True

Three points in 3D which are supposed to be collinear (returns false due to numerical error)

>>> is_collinear(np.array([[0, 0, 0], [1, 1, 1], [5, 5, 5]]), tol=0)
False

The previous example with looser tolerance

>>> is_collinear(np.array([[0, 0, 0], [1, 1, 1], [5, 5, 5]]), tol=1e-14)
True

grains.geometry.squared_distance(x, y)
Squared Euclidean distance between two points.

For points 𝑥(𝑥1, ..., 𝑥𝑛) and 𝑦(𝑦1, ...𝑦𝑛) the following metric is computed

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)
2

Parameters x, y (ndarray) – 1D numpy array, containing the coordinates of the two points.

Returns float – Squared Euclidean distance.

See also:

distance_matrix()

Examples

>>> squared_distance(np.array([0, 0, 0]), np.array([1, 1, 1]))
3.0

116 Chapter 22. Geometry

https://nl.mathworks.com/matlabcentral/discussions/b-loren/127448-loren-on-the-art-of-matlab-collinearity/21239#reply_21239

CHAPTER

TWENTYTHREE

ABAQUS

Warning: This module will substantially be rewritten. See this issue.

This module allows to create and manipulate Abaqus input files through the Abaqus keywords, thereby providing
automation. Note that it is not intended to be a complete API to Abaqus. If you want fine control over the whole
Abaqus ecosystem, consult with the Abaqus Scripting Reference Guide (ASRG). However, ASRG needs Abaqus to
be installed, moreover, you must use the Python interpreter embedded into Abaqus. That version of Python is very
old even in the latest versions of Abaqus. Furthermore, if you need to use custom Python packages for your work,
chances are high that they will not work with the embedded interpreter, and may even crash the installation. To use
this module, no Abaqus installation is needed. In fact, only functions from the Python standard library are used.

The documentation of Abaqus version 2017 is hosted on the following website: https://abaqus-docs.mit.edu/2017/
English/SIMACAEEXCRefMap/simaexc-c-docproc.htm. Throughout the documentation of this module (grains.
abaqus), we will make references to that website. If the links cease to exist, please let me know by opening an issue.
Alternatively, once you have registered, you can browse the documentation on the official website.

23.1 Classes

Geometry Geometrical operations on the mesh.
Material Adds, removes, modifies materials.
Procedure Handling analysis steps during the simulation.

23.1.1 grains.abaqus.Geometry

class grains.abaqus.Geometry
Geometrical operations on the mesh.

__init__()
Initialize self. See help(type(self)) for accurate signature.

117

https://github.com/CsatiZoltan/CristalX/issues/28
https://abaqus-docs.mit.edu/2017/English/SIMACAECAERefMap/simacae-c-gen-kwbrowser.htm
https://abaqus-docs.mit.edu/2017/English/SIMACAEEXCRefMap/simaexc-c-docproc.htm
https://abaqus-docs.mit.edu/2017/English/SIMACAEEXCRefMap/simaexc-c-docproc.htm
https://github.com/CsatiZoltan/CristalX/issues/new
https://www.3ds.com/support/documentation/users-guides/

CristalX, Release 1.1.0

Methods

__init__() Initialize self.
read(inp_file) Reads material data from an Abaqus .inp file.
scale(factor) Scales the geometry by modifying the coordinates of

the nodes.
write([output_file]) Writes material data to an Abaqus .inp file.

23.1.2 grains.abaqus.Material

class grains.abaqus.Material(from_Abaqus=False)
Adds, removes, modifies materials. Requirements: be able to - create an empty .inp file, containing only the
materials - add materials to an existing .inp file

TODO: only document public attributes! .. attribute:: materials

materials, their behaviors and their parameters are stored here. Intended for internal representation.
To view them, use the show method, to write them to an input file, use the write method.

type dict

read(inp_file)
Reads material data from an Abaqus .inp file.

write(output_file=None)
Writes material data to an Abaqus .inp file.

remove(inp_file, output_file=None)
Removes material definitions from an Abaqus .inp file.

create(inp_file)
Creates empty Abaqus .inp file.

show()
Shows material data as it appears in the Abaqus .inp file.

Notes

The aim of this class is to programmatically add, remove, modify materials in a format understandable by
Abaqus. This class does not target editing materials through a GUI (that can be done in Abaqus CAE).

__init__(from_Abaqus=False)

Parameters from_Abaqus (bool, optional) – True if the input file was generated by Abaqus.
The default is False. Abaqus generates input files with a consistent format. This allows
certain optimizations: the input file may not need to be completely traversed to extract the
materials. Third-party programs sometimes generate .inp files, which are valid but do not
follow the Abaqus pattern. In this case, it cannot be predicted where the material definition
ends in the file – the whole file needs to be traversed.

Returns None.

118 Chapter 23. Abaqus

CristalX, Release 1.1.0

Methods

__init__([from_Abaqus])
Parameters from_Abaqus (bool, op-

tional) – True if the input file was
generated by Abaqus. The default is
False.

add_linearelastic(material, E, nu) Adds linear elastic behavior to a given material.
add_material(material) Defines a new material by its name.
add_plastic(material, sigma_y, epsilon_p) Adds metal plasticity behavior to a given material.
add_sections(inp_file[, output_file]) Adds section definitions to an Abaqus .inp file.
create(inp_file) Creates empty Abaqus .inp file.
read(inp_file) Reads material data from an Abaqus .inp file.
remove(inp_file[, output_file]) Removes material definitions from an Abaqus .inp

file.
show() Shows material data as it appears in the Abaqus .inp

file.
write([output_file]) Writes material data to an Abaqus .inp file.

23.1.3 grains.abaqus.Procedure

class grains.abaqus.Procedure(from_Abaqus=False)
Handling analysis steps during the simulation.

TODO: only document public attributes!

steps
analysis steps, each step collecting the necessary information. Intended for internal representation. To
view them, use the show() method, to write them to an input file, use the write() method.

Type dict

__init__(from_Abaqus=False)

Parameters from_Abaqus (bool, optional) – True if the input file was generated by Abaqus.
The default is False. Abaqus generates input files with a consistent format. This allows
certain optimizations: the input file may not need to be completely traversed to extract the
materials. Third-party programs sometimes generate .inp files, which are valid but do not
follow the Abaqus pattern. In this case, it cannot be predicted where the material definition
ends in the file – the whole file needs to be traversed.

Returns None.

Methods

__init__([from_Abaqus])
Parameters from_Abaqus (bool, op-

tional) – True if the input file was
generated by Abaqus. The default is
False.

Continued on next page

23.1. Classes 119

https://docs.python.org/3/library/stdtypes.html#dict

CristalX, Release 1.1.0

Table 4 – continued from previous page
add_analysis(step[, time_period, . . .]) Adds an analysis type to a given step.
add_boundary_condition(name, step, nodes,
. . .)

Adds boundary condition to a given step.

create_step(name[, nlgeom, max_increments]) Defines a new step.
read(inp_file) Reads procedure data from an Abaqus .inp file.
show() Shows the text for the step module, as it appears in

the Abaqus .inp file.
write([output_file]) Writes step definition data to an Abaqus .inp file.

23.2 Functions

extract(keyword) Obtains Abaqus keyword and its parameters.
validate_file(file, caller) Input or output file validation.

23.2.1 grains.abaqus.extract

grains.abaqus.extract(keyword)
Obtains Abaqus keyword and its parameters.

Parameters keyword (str) –

Some examples: ‘*Elastic, type=ORTHOTROPIC’ ‘*Damage Initiation, criterion=HASHIN’
‘*Nset, nset=Set-1, generate’

Returns separated (list) – DESCRIPTION.

23.2.2 grains.abaqus.validate_file

grains.abaqus.validate_file(file, caller)
Input or output file validation.

Parameters

• file (str) – Existing Abaqus .inp file or a new .inp file to be created.

• caller ({‘read’, ‘write’, ‘create’}) – Method name that called this function.

Returns None.

class grains.abaqus.Geometry
Bases: object

Geometrical operations on the mesh.

_Geometry__format()

Formats the material data in the Abaqus .inp format. The internal representation of the material data
in converted to a string understood by Abaqus.

abaqus_format [list] List of strings, each element of the list corresponding to a line (with

line ending) in the Abaqus .inp file. In case of no

material, an empty list is returned.

120 Chapter 23. Abaqus

https://docs.python.org/3/library/functions.html#object

CristalX, Release 1.1.0

The output is a list so that further concatenation operations are easy. If you want a string, merge the
elements of the list:

output = ‘’.join(output)

This is what the show method does.

read(inp_file)
Reads material data from an Abaqus .inp file.

Parameters inp_file (str) – Abaqus input (.inp) file to be created.

Returns None.

Notes

• This method is designed to read material data. Although the logic could be used to process other
properties (parts, assemblies, etc.) in an input file, they are not yet implemented in this class.

• This method assumes that the input file is valid. If it is, the material data can be extacted. If not,
the behavior is undefined: the program can crash or return garbage. This is by design: the single
responsibility principle dictates that the validity of the input file must be provided by other methods.
If the input file was generated from within Abaqus CAE, it is guaranteed to be valid. The write
method of this class also ensures that the resulting input file is valid. This design choice also makes
the program logic simpler. For valid syntax in the input file, check the Input Syntax Rules section in
the Abaqus user’s guide.

• To read material data from an input file, one has to identify the structure of .inp files in Abaqus.
Abaqus is driven by keywords and corresponding data. For a list of accepted keywords, consult the
Abaqus Keywords Reference Guide. There are three types of input lines in Abaqus:

– keyword line: begins with a star, followed by the name of the keyword. Parameters, if any, are
separated by commas and are given as parameter-value pairs. Keywords and parameters are not
case sensitive. Example:

*ELASTIC, TYPE=ISOTROPIC, DEPENDENCIES=1

Some keywords can only be defined once another keyword has already been defined. E.g. the
keyword ELASTIC must come after MATERIAL in a valid .inp file.

– data line: immediately follows a keyword line. All data items must be separated by commas.
Example:

-12.345, 0.01, 5.2E-2, -1.2345E1

– comment line: starts with ** and is ignored by Abaqus. Example: ** This is a comment line

• Internally, the materials are stored in a dictionary. It holds the material data read from the file. The
keys in this dictionary are the names of the materials, and the values are dictionaries themselves. Each
such dictionary stores a behavior for the given material. E.g. an elastoplastic material is governed by
an elastic and a plastic behavior. The parameters for each behavior are stored in a list.

scale(factor)
Scales the geometry by modifying the coordinates of the nodes.

Parameters factor (float) – Each nodal coordinate is multiplied by this non-negative number.

Returns None.

23.2. Functions 121

CristalX, Release 1.1.0

Notes

The modification happens in-place.

write(output_file=None)
Writes material data to an Abaqus .inp file.

Parameters output_file (str, optional) – Output file name to write the modifications into. If not
given, the original file name is appended with ‘_mod’.

Returns None.

Notes

• If the output file name is the same as the input file, the original .inp file will be overwritten. This is
strongly not recommended.

• The whole content of the original input file is read to memory. It might be a problem for very large
.inp files. In that case, a possible implementation could be the following:

1. Remove old material data

2. Append new material data to the proper position in the file

Appending is automatically done at the end of the file. Moving the material description to the end
of the file is not possible in general because defining materials cannot be done from any module,
i.e. the *MATERIAL keyword cannot follow an arbitrary keyword. In this case, Abaqus throws an
AbaqusException with the following message:

It can be suboption for the following keyword(s)/level(s): model

class grains.abaqus.Material(from_Abaqus=False)
Bases: object

Adds, removes, modifies materials. Requirements: be able to - create an empty .inp file, containing only the
materials - add materials to an existing .inp file

TODO: only document public attributes! .. attribute:: materials

materials, their behaviors and their parameters are stored here. Intended for internal representation.
To view them, use the show method, to write them to an input file, use the write method.

type dict

read(inp_file)
Reads material data from an Abaqus .inp file.

write(output_file=None)
Writes material data to an Abaqus .inp file.

remove(inp_file, output_file=None)
Removes material definitions from an Abaqus .inp file.

create(inp_file)
Creates empty Abaqus .inp file.

show()
Shows material data as it appears in the Abaqus .inp file.

122 Chapter 23. Abaqus

https://docs.python.org/3/library/functions.html#object

CristalX, Release 1.1.0

Notes

The aim of this class is to programmatically add, remove, modify materials in a format understandable by
Abaqus. This class does not target editing materials through a GUI (that can be done in Abaqus CAE).

_Material__format()

Formats the material data in the Abaqus .inp format. The internal representation of the material data
in converted to a string understood by Abaqus.

abaqus_format [list] List of strings, each element of the list corresponding to a line (with

line ending) in the Abaqus .inp file. In case of no

material, an empty list is returned.

The output is a list so that further concatenation operations are easy. If you want a string, merge the
elements of the list:

output = ‘’.join(output)

This is what the show method does.

static _Material__isnumeric(x)
Decides if the input is a scalar number.

Parameters x (any type) – Input to be tested.

Returns bool – True if the given object is a scalar number.

add_linearelastic(material, E, nu)
Adds linear elastic behavior to a given material.

Parameters

• material (str) – Name of the material the behavior belongs to.

• E (int, float) – Young’s modulus.

• nu (int, float) – Poisson’s ratio.

Returns None.

add_material(material)
Defines a new material by its name.

Parameters material (str) – Name of the material to be added. A material can have multiple
behaviors (e.g. elastoplastic).

Returns None.

add_plastic(material, sigma_y, epsilon_p)
Adds metal plasticity behavior to a given material.

Parameters

• material (str) – Name of the material the behavior belongs to.

• sigma_y (int, float) – Yield stress.

• epsilon_p (int, float) – Plastic strain.

Returns None.

static add_sections(inp_file, output_file=None)
Adds section definitions to an Abaqus .inp file.

23.2. Functions 123

CristalX, Release 1.1.0

Defines properties for elements by associating materials to them. The element set containing the elements
for which the material behavior is being defined is assumed to have the same name as that of the material.
E.g. if materials with names mat-1 and mat-2 exist, element sets with names mat-1 and mat-2 must also
exist. If such element sets do not exist, Abaqus will throw a warning and the section assignment will not
be successful.

Parameters

• inp_file (str) – Abaqus .inp file from which the materials should be removed.

• output_file (str, optional) – Output file name to write the modifications into. If not given,
the original file name is appended with ‘_mod’.

Returns None.

Notes

If fine control is required for associating custom material names to custom element set names, that can be
done from the Abaqus GUI. The purpose of this method is automation for large number of element sets,
each associated to a (possibly distinct) material. In that case, custom element set names are not reasonable
any more, and having the same names for the element sets and for the materials is completely meaningful.

create(inp_file)
Creates empty Abaqus .inp file.

Parameters inp_file (str) – Abaqus input file to be created. If an extension is not given, the
default .inp is used.

Returns None.

read(inp_file)
Reads material data from an Abaqus .inp file.

Parameters inp_file (str) – Abaqus input (.inp) file to be created.

Returns None.

Notes

• This method is designed to read material data. Although the logic could be used to process other
properties (parts, assemblies, etc.) in an input file, they are not yet implemented in this class.

• This method assumes that the input file is valid. If it is, the material data can be extacted. If not,
the behavior is undefined: the program can crash or return garbage. This is by design: the single
responsibility principle dictates that the validity of the input file must be provided by other methods.
If the input file was generated from within Abaqus CAE, it is guaranteed to be valid. The write
method of this class also ensures that the resulting input file is valid. This design choice also makes
the program logic simpler. For valid syntax in the input file, check the Input Syntax Rules section in
the Abaqus user’s guide.

• To read material data from an input file, one has to identify the structure of .inp files in Abaqus.
Abaqus is driven by keywords and corresponding data. For a list of accepted keywords, consult the
Abaqus Keywords Reference Guide. There are three types of input lines in Abaqus:

– keyword line: begins with a star, followed by the name of the keyword. Parameters, if any, are
separated by commas and are given as parameter-value pairs. Keywords and parameters are not
case sensitive. Example:

*ELASTIC, TYPE=ISOTROPIC, DEPENDENCIES=1

124 Chapter 23. Abaqus

CristalX, Release 1.1.0

Some keywords can only be defined once another keyword has already been defined. E.g. the
keyword ELASTIC must come after MATERIAL in a valid .inp file.

– data line: immediately follows a keyword line. All data items must be separated by commas.
Example:

-12.345, 0.01, 5.2E-2, -1.2345E1

– comment line: starts with ** and is ignored by Abaqus. Example: ** This is a comment line

• Internally, the materials are stored in a dictionary. It holds the material data read from the file. The
keys in this dictionary are the names of the materials, and the values are dictionaries themselves. Each
such dictionary stores a behavior for the given material. E.g. an elastoplastic material is governed by
an elastic and a plastic behavior. The parameters for each behavior are stored in a list.

static remove(inp_file, output_file=None)
Removes material definitions from an Abaqus .inp file.

Parameters

• inp_file (str) – Abaqus .inp file from which the materials should be removed.

• output_file (str, optional) – Output file name to write the modifications into. If not given,
the original file name is appended with ‘_mod’.

Returns None.

show()
Shows material data as it appears in the Abaqus .inp file.

Returns None.

write(output_file=None)
Writes material data to an Abaqus .inp file.

Parameters output_file (str, optional) – Output file name to write the modifications into. If not
given, the original file name is appended with ‘_mod’.

Returns None.

Notes

• If the output file name is the same as the input file, the original .inp file will be overwritten. This is
strongly not recommended.

• The whole content of the original input file is read to memory. It might be a problem for very large
.inp files. In that case, a possible implementation could be the following:

1. Remove old material data

2. Append new material data to the proper position in the file

Appending is automatically done at the end of the file. Moving the material description to the end
of the file is not possible in general because defining materials cannot be done from any module,
i.e. the *MATERIAL keyword cannot follow an arbitrary keyword. In this case, Abaqus throws an
AbaqusException with the following message:

It can be suboption for the following keyword(s)/level(s): model

class grains.abaqus.Procedure(from_Abaqus=False)
Bases: object

Handling analysis steps during the simulation.

23.2. Functions 125

https://docs.python.org/3/library/functions.html#object

CristalX, Release 1.1.0

TODO: only document public attributes!

steps
analysis steps, each step collecting the necessary information. Intended for internal representation. To
view them, use the show() method, to write them to an input file, use the write() method.

Type dict

_Procedure__format()

Formats the data in the Abaqus .inp format. The internal representation of the steps data in converted
to a string understood by Abaqus.

abaqus_format [list] List of strings, each element of the list corresponding to a line (with

line ending)

in the Abaqus .inp file. In case of no data, an empty list is returned.

The output is a list so that further concatenation operations are easy. If you want a string, merge the
elements of the list: output = ''.join(output) This is what the show() method does.

add_analysis(step, time_period=1.0, initial_increment=None, min_increment=0,
max_increment=None)

Adds an analysis type to a given step.

Note: Currently only static stress/displacement analysis is supported, indicated by the STATIC Abaqus
keyword. No optional parameters are supported.

Todo: Check user inputs. Define exceptions (ValueError class) with the error messages Abaqus CAE
throws.

Parameters

• step (str) – Name of the step the analysis type belongs to.

• initial_increment (float, optional) – Initial time increment. This value will be modified
as required if the automatic time stepping scheme is used. If this entry is zero or is not
specified, a default value that is equal to the total time period of the step is assumed.

• time_period (float, optional) – Time period of the step. The default is 1.0.

• min_increment (float, optional) – Only used for automatic time incrementation. If
ABAQUS/Standard finds it needs a smaller time increment than this value, the analysis
is terminated. If this entry is zero, a default value of the smaller of the suggested initial
time increment or 1e–5 times the total time period is assumed.

• max_increment (float, optional) – Maximum time increment allowed. Only used for
automatic time incrementation. If this value is not specified, no upper limit is imposed,
i.e. max_increment = time_period.

Returns None

126 Chapter 23. Abaqus

https://docs.python.org/3/library/stdtypes.html#dict
https://abaqus-docs.mit.edu/2017/English/SIMACAEKEYRefMap/simakey-r-static.htm#simakey-r-static

CristalX, Release 1.1.0

Examples

>>> proc = Procedure()
>>> proc.create_step('Step-1', max_increments=1000)
>>> proc.add_analysis('Step-1', initial_increment=0.001, min_increment=1e-8)

add_boundary_condition(name, step, nodes, first_dof, last_dof=None, magnitude=0.0)
Adds boundary condition to a given step.

Boundary conditions can be prescribed on node sets, using the Abaqus keyword BOUNDARY. Optional
parameters are not supported.

Multiple boundary conditions can be given on the same node set. It is the responsibility of the user to
ensure that the constraints are compatible.

Note: Currently, boundary conditions can only be defined in a user-defined step, and not in the initial
step.

Parameters

• name (str) – Name of the boundary condition to be added. Boundary condition names
must be unique.

• step (str) – Name of the step the boundary condition belongs to.

• nodes (str or int) – If a string, the label of the node set, if a positive integer, the label of a
single node on which the boundary condition is prescribed.

• first_dof (int) – First degree of freedom constrained.

• last_dof (int, optional) – Last degree of freedom constrained. Not necessary to be given if
only one degree of freedom is being constrained.

• magnitude (float) – Magnitude of the variable. If this magnitude is a rotation, it must be
given in radians. The default value is 1.0.

Returns None

Examples

Let us consider a two-dimensional structure, fixed on a part of its boundary (called ‘left’), and displaced
on another part (called ‘right’). First, we create an analysis step (named ‘Step-1’).

>>> proc = Procedure()
>>> proc.create_step('Step-1', max_increments=1000)

Now, we prescribe the zero displacements.

>>> proc.add_boundary_condition('fixed', 'Step-1', 'left', first_dof=1, last_
→˓dof=2)

Since we did not specify the magnitude of the displacement components, they are zero by default. The
other boundary condition prescribes different values for the horizontal and vertical components. Hence,
they are given separately.

23.2. Functions 127

https://abaqus-docs.mit.edu/2017/English/SIMACAEKEYRefMap/simakey-r-boundary.htm#simakey-r-boundary

CristalX, Release 1.1.0

>>> proc.add_boundary_condition('pulled_right', 'Step-1', 'right', first_
→˓dof=1, magnitude=2)
>>> proc.add_boundary_condition('fixed_right', 'Step-1', 'right', first_dof=2,
→˓ magnitude=0)

Note that we can also prescribe boundary conditions at a particular node, e.g.

>>> proc.add_boundary_condition('at_node', 'Step-1', 1, first_dof=2,
→˓magnitude=-1.2)

where we set the vertical displacement component to -1.2 at node 1.

create_step(name, nlgeom=False, max_increments=100)
Defines a new step.

A step is the fundamental part of the simulation workflow in Abaqus. Among the available options, only
the NLGEOM and INC options are supported currently.

Todo: Check in the write() method whether every step contains an analysis, as this is required by
Abaqus.

Parameters

• name (str) – Name of the analysis step to be added. Step names must be unique.

• nlgeom (bool, optional) – Omit this parameter or set to False to perform a geometrically
linear analysis during the current step. Set it to True to indicate that geometric nonlinearity
should be accounted for during the step. Once the nlgeom option has been switched on,
it will be active during all subsequent steps in the analysis. The default is False.

• max_increments (int) – The analysis will stop if the maximum number of increments is
exceeded before the complete solution for the step has been obtained. The default is 100.

Returns None

read(inp_file)
Reads procedure data from an Abaqus .inp file.

Parameters inp_file (str) – Abaqus input (.inp) file to be created.

Returns None.

Notes

• This method is designed to read material data. Although the logic could be used to process other
properties (parts, assemblies, etc.) in an input file, they are not yet implemented in this class.

• This method assumes that the input file is valid. If it is, the material data can be extacted. If not,
the behavior is undefined: the program can crash or return garbage. This is by design: the single
responsibility principle dictates that the validity of the input file must be provided by other methods.
If the input file was generated from within Abaqus CAE, it is guaranteed to be valid. The write
method of this class also ensures that the resulting input file is valid. This design choice also makes
the program logic simpler. For valid syntax in the input file, check the Input Syntax Rules section in
the Abaqus user’s guide.

128 Chapter 23. Abaqus

https://abaqus-docs.mit.edu/2017/English/SIMACAEKEYRefMap/simakey-r-step.htm#simakey-r-step

CristalX, Release 1.1.0

• To read material data from an input file, one has to identify the structure of .inp files in Abaqus.
Abaqus is driven by keywords and corresponding data. For a list of accepted keywords, consult the
Abaqus Keywords Reference Guide. There are three types of input lines in Abaqus:

– keyword line: begins with a star, followed by the name of the keyword. Parameters, if any, are
separated by commas and are given as parameter-value pairs. Keywords and parameters are not
case sensitive. Example:

*ELASTIC, TYPE=ISOTROPIC, DEPENDENCIES=1

Some keywords can only be defined once another keyword has already been defined. E.g. the
keyword ELASTIC must come after MATERIAL in a valid .inp file.

– data line: immediately follows a keyword line. All data items must be separated by commas.
Example:

-12.345, 0.01, 5.2E-2, -1.2345E1

– comment line: starts with ** and is ignored by Abaqus. Example: ** This is a comment line

• Internally, the materials are stored in a dictionary. It holds the material data read from the file. The
keys in this dictionary are the names of the materials, and the values are dictionaries themselves. Each
such dictionary stores a behavior for the given material. E.g. an elastoplastic material is governed by
an elastic and a plastic behavior. The parameters for each behavior are stored in a list.

show()
Shows the text for the step module, as it appears in the Abaqus .inp file.

Returns None.

write(output_file=None)
Writes step definition data to an Abaqus .inp file.

Parameters output_file (str, optional) – Output file name to write the modifications into. If not
given, the original file name is appended with ‘_mod’.

Returns None.

Notes

• If the output file name is the same as the input file, the original .inp file will be overwritten. This is
strongly not recommended.

• The whole content of the original input file is read to memory. It might be a problem for very large
.inp files. In that case, a possible implementation could be the following:

1. Remove old material data

2. Append new material data to the proper position in the file

Appending is automatically done at the end of the file. Moving the material description to the end
of the file is not possible in general because defining materials cannot be done from any module,
i.e. the *MATERIAL keyword cannot follow an arbitrary keyword. In this case, Abaqus throws an
AbaqusException with the following message:

It can be suboption for the following keyword(s)/level(s): model

grains.abaqus.extract(keyword)
Obtains Abaqus keyword and its parameters.

Parameters keyword (str) –

23.2. Functions 129

CristalX, Release 1.1.0

Some examples: ‘*Elastic, type=ORTHOTROPIC’ ‘*Damage Initiation, criterion=HASHIN’
‘*Nset, nset=Set-1, generate’

Returns separated (list) – DESCRIPTION.

grains.abaqus.validate_file(file, caller)
Input or output file validation.

Parameters

• file (str) – Existing Abaqus .inp file or a new .inp file to be created.

• caller ({‘read’, ‘write’, ‘create’}) – Method name that called this function.

Returns None.

130 Chapter 23. Abaqus

CHAPTER

TWENTYFOUR

DIC

This module is used to process field values obtained by digital image correlation (DIC). Plotting, comparison with
numerical solutions, etc. are implemented.

24.1 Classes

DIC Performs operations on digital image correlation data.

24.1.1 grains.dic.DIC

class grains.dic.DIC(u, v)
Performs operations on digital image correlation data.

Parameters u, v (ndarray) – The two components of the displacement field, discretized on a rect-
angular grid.

Raises ValueError – If the displacement components are not discretized on the same grid or if
the grid size is not at least 3-by-3. This latter requirement is not a problem in practice (which
camera is not capable of shooting photos in 9 pixels resolution?), while it allows the evaluation
of the numerical derivatives with second order accuracy on the boundaries too.

Notes

Throughout the class methods, the following terms are used. When not precised, image refers to the DIC data
plotted as an image. We can perceive the image as a pixel grid, in which the vertices are the centres of the pixels.
An image coordinate system (𝑋,𝑌) can be defined on this grid such that the vertices have integer coordinates,
the origin 𝐴 is at the top left hand corner, and the 𝑌 -axis points towards the right, while the 𝑋-axis points to
the bottom. When the experimental result is compared with a numerical solution (assumed to be available at
the nodes of a mesh), one needs to map values defined on the DIC grid onto the nodes of the mesh, and vice
versa. The mesh exists on the physical domain, for which a physical coordinate system (𝑥, 𝑦) is attached to.
Hence, there is a need to express (𝑋,𝑌) in terms of (𝑥, 𝑦). Let 𝐴(𝑎𝑥, 𝑎𝑦) be the origin of the (𝑋,𝑌) coordinate
system given in terms of the 𝑥, 𝑦 coordinates, and 𝑠[pixel/mm] is the scale for the DIC image. The coordinate
transformation is then given by

The DIC grid in the physical coordinate system (𝑥, 𝑦) is called physical grid.

131

https://docs.python.org/3/library/exceptions.html#ValueError

CristalX, Release 1.1.0

It should be noted that the special alignment of (𝑥, 𝑦) with respect to (𝑋,𝑌) is not a major constraint. In
practical applications (when a Cartesian coordinate system is used), the orientation of (𝑥, 𝑦) in this way is a
convention.

__init__(u, v)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(u, v) Initialize self.
equivalent_strain(strain_tensor,
strain_measure)

Computes a scalar quantity from the strain tensor.

plot_displacement(component[, ax]) Plots a component of the displacement field.
plot_physicalgrid([ax]) Plots the DIC grid in the physical coordinate system.
plot_pixelgrid([ax]) Plots the DIC grid in the image coordinate system.
plot_strain(component[, minval, maxval, . . .]) Plots a component of the infinitesimal strain tensor.
plot_superimposedmesh(mesh, *args,
**kwargs)

Plots the DIC grid with a mesh superimposed on it.

project_onto_grid(nodes, nodal_values[,
method])

Project a numerically computed field onto the DIC
grid.

project_onto_mesh(nodes[, method]) Project the experimental displacement field onto a
mesh.

set_transformation(origin, . . .) Sets the transformation rule between the pixel and
the physical coordinate systems.

strain(strain_measure) Computes the strain tensor from the displacement
vector.

24.2 Functions

plot_strain(strain[, minval, maxval, . . .]) Plots a scalar strain field.

24.2.1 grains.dic.plot_strain

grains.dic.plot_strain(strain, minval=None, maxval=None, colorbar=True, label='')
Plots a scalar strain field.

Parameters

• strain (ndarray) – Scalar strain field sampled on an m-by-n grid, given as a 2D numpy array.

• minval, maxval (float, optional) – Set the color scaling for the image by fixing the values
that map to the colormap color limits. If minval is not provided, the limit is determined
from the minimum value of the data. Similarly for maxval.

• colorbar (bool, optional) – If True, a horizontal colorbar is placed below the strain map.
The default is True.

• label (str, optional) – Label describing the strain field. LaTeX code is also accepted, e.g.
r’$varepsilon_{yy}$’. If not given, no text is displayed.

Returns None

132 Chapter 24. DIC

CristalX, Release 1.1.0

See also:

DIC.strain()

Deprecated since version 1.1.0: This will be removed in 1.3.0. This function will be a static method of the DIC
class. See also the deprecation warning of DIC.plot_strain().

class grains.dic.DIC(u, v)
Bases: object

Performs operations on digital image correlation data.

Parameters u, v (ndarray) – The two components of the displacement field, discretized on a rect-
angular grid.

Raises ValueError – If the displacement components are not discretized on the same grid or if
the grid size is not at least 3-by-3. This latter requirement is not a problem in practice (which
camera is not capable of shooting photos in 9 pixels resolution?), while it allows the evaluation
of the numerical derivatives with second order accuracy on the boundaries too.

Notes

Throughout the class methods, the following terms are used. When not precised, image refers to the DIC data
plotted as an image. We can perceive the image as a pixel grid, in which the vertices are the centres of the pixels.
An image coordinate system (𝑋,𝑌) can be defined on this grid such that the vertices have integer coordinates,
the origin 𝐴 is at the top left hand corner, and the 𝑌 -axis points towards the right, while the 𝑋-axis points to
the bottom. When the experimental result is compared with a numerical solution (assumed to be available at
the nodes of a mesh), one needs to map values defined on the DIC grid onto the nodes of the mesh, and vice
versa. The mesh exists on the physical domain, for which a physical coordinate system (𝑥, 𝑦) is attached to.
Hence, there is a need to express (𝑋,𝑌) in terms of (𝑥, 𝑦). Let 𝐴(𝑎𝑥, 𝑎𝑦) be the origin of the (𝑋,𝑌) coordinate
system given in terms of the 𝑥, 𝑦 coordinates, and 𝑠[pixel/mm] is the scale for the DIC image. The coordinate
transformation is then given by

The DIC grid in the physical coordinate system (𝑥, 𝑦) is called physical grid.

It should be noted that the special alignment of (𝑥, 𝑦) with respect to (𝑋,𝑌) is not a major constraint. In
practical applications (when a Cartesian coordinate system is used), the orientation of (𝑥, 𝑦) in this way is a
convention.

static equivalent_strain(strain_tensor, strain_measure)
Computes a scalar quantity from the strain tensor.

Parameters

• strain_tensor (ndarray) – Components of the strain tensor 𝜀 as an 𝑚 × 𝑛 × 3 array.
The first two dimensions correspond to the grid points they are determined at, the third
dimension gives the components of the tensor in the following order: 𝜀11, 𝜀12, 𝜀22.

• strain_measure ({‘von Mises’}) – One of the following strain measures.

– ‘von Mises’

𝜀𝑀 :=

√︂
2

3
𝜀dev : 𝜀dev =

√︃
2

3

(︂
𝜀 : 𝜀− 1

3
(tr𝜀)2

)︂

24.2. Functions 133

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ValueError

CristalX, Release 1.1.0

where 𝜀dev is the deviatoric part of the strain tensor. This can further be simplified
(see the notes below) to

𝜀𝑀 =
2

3

√︁
𝜀211 + 𝜀222 + 3𝜀212 − 𝜀11𝜀22

Returns ndarray – Equivalent strain at the grid points, given as an 𝑚× 𝑛 numpy array.

See also:

strain()

Notes

Under plane stress conditions, 𝜀33 is not zero, but it is computed as

𝜀33 = − 𝜈

𝐸
(𝜎11 + 𝜎22)

Since the stresses are not known from the DIC, one must settle with plane strain conditions where 𝜀33 = 0.
This is what we follow in the DIC class. We remark that in stereo-DIC multiple cameras are used, which
allows the measurement of 𝜀33.

plot_displacement(component, ax=None)
Plots a component of the displacement field.

Parameters

• component ({1, 2}) – Component to be plotted, where 1 corresponds to the first, 2
corresponds to the second component of the displacement field.

• ax (matplotlib.axes.Axes, optional) – The Axes instance the grid resides in. The de-
fault is None, in which case a new Axes within a new figure is created.

Returns None

See also:

plot_strain()

plot_physicalgrid(ax=None)
Plots the DIC grid in the physical coordinate system.

This method is only available once the relation between the image coordinate system and the physical
coordinate system has been set up by the set_transformation() method.

Parameters ax (matplotlib.axes.Axes, optional) – The Axes instance the grid resides in. The
default is None, in which case a new Axes within a new figure is created.

Returns ax (matplotlib.axes.Axes)

See also:

plot_pixelgrid()

134 Chapter 24. DIC

CristalX, Release 1.1.0

Notes

See in the plot_pixelgrid() method.

plot_pixelgrid(ax=None)
Plots the DIC grid in the image coordinate system.

Parameters ax (matplotlib.axes.Axes, optional) – The Axes instance the grid resides in. The
default is None, in which case a new Axes within a new figure is created.

Returns ax (matplotlib.axes.Axes)

See also:

plot_physicalgrid()

Notes

For a DIC image with 𝑚×𝑛 number of pixels, the number of grid lines is (𝑚+ 1) + (𝑛+ 1). Plotting all
these lines would not only slow down the program, it would also make the grid practically indistinguish-
able from a filled rectangle. Therefore, for high resolution images, only grid lines around the boundary
of the image are plotted. The target resolution above which this strategy is used can be given in the class
constructor.

plot_strain(component, minval=None, maxval=None, colorbar=True)
Plots a component of the infinitesimal strain tensor.

The partial derivatives of the displacement field are computed with numerical differentiation.

Parameters

• component (tuple, {(1,1), (1,2), (2,1), (2,2)}) – Component to be plotted, where

– (1,1) denotes 𝜀11

– (1,2) and (2,1) denote 𝜀12 = 𝜀21

– (2,2) denotes 𝜀22

for the infinitesimal strain tensor

𝜀 =

(︂
𝜀11 𝜀12
𝜀21 𝜀22

)︂
• minval, maxval (float, optional) – Set the color scaling for the image by fixing the

values that map to the colormap color limits. If minval is not provided, the limit is
determined from the minimum value of the data. Similarly for maxval.

• colorbar (bool, optional) – If True, a horizontal colorbar is placed below the strain
map. The default is True.

Returns None

See also:

plot_displacement(), numpy.gradient()

Deprecated since version 1.1.0: This will be removed in 1.3.0. This method will be modified to perform
the plotting only. The computation of the various strain measures will be done in the strain() method.
The function that replaces this function will keep the same name and is currently implemented outside
this class.

24.2. Functions 135

https://numpy.org/doc/stable/reference/generated/numpy.gradient.html#numpy.gradient

CristalX, Release 1.1.0

plot_superimposedmesh(mesh, *args, **kwargs)
Plots the DIC grid with a mesh superimposed on it.

Since the finite element mesh represents a physical domain, the DIC grid is plotted in the physical coor-
dinate system, which is determined by the set_transformation() method.

Note: Maybe no need to couple this module with the geometry module just for the sake of this function.
It is probably easier to simply pass the nodes and the elements, and call triplot.

Parameters

• mesh (Mesh) – A subclass of grains.geometry.Mesh to be plotted along with
the physical DIC grid.

• args (optional) – The same as for matplotlib.axes.Axes.plot(). The set-
tings given here influence the mesh plotting.

• kwargs (optional) – The same as for matplotlib.axes.Axes.plot(). The
settings given here influence the mesh plotting.

Returns ax (matplotlib.axes.Axes) – The Axes object on which the plot is drawn.

See also:

grains.geometry.TriMesh.plot()

Examples

Let us create a grid and a random mesh (the same as in the Examples section of the
project_onto_mesh()).

>>> from grains.dic import DIC
>>> from grains.geometry import TriMesh
>>> x_grid, y_grid = np.mgrid[-1:1:100j, 1:2:50j]
>>> exact_solution = lambda x, y: 1 - (x + y**2) * np.sign(x)
>>> grid = DIC(np.random.rand(*np.shape(x_grid.T)), np.random.rand(*np.
→˓shape(x_grid.T)))
>>> grid.set_transformation((-1, 2), 50)
>>> n_nodes = 100 # modify this to see how good the interpolated solution is
>>> msh = TriMesh(*TriMesh.sample_mesh(1, n_nodes))
>>> grid.plot_superimposedmesh(msh, linewidth=3, markerfacecolor='b')
>>> plt.show()

project_onto_grid(nodes, nodal_values, method='linear')
Project a numerically computed field onto the DIC grid.

Todo: Use the example code of this method to create the plotting method of this class. When done,
rewrite the example with the methods.

Parameters

• nodes (ndarray) – 2D numpy array with 2 columns, each row corresponding to a node
of the mesh, and the two columns giving the Cartesian coordinates of the nodes.

136 Chapter 24. DIC

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html#matplotlib.axes.Axes.plot
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html#matplotlib.axes.Axes.plot

CristalX, Release 1.1.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

1.2

1.4

1.6

1.8

2.0

24.2. Functions 137

CristalX, Release 1.1.0

• nodal_values (ndarray) – 1D numpy array (vector), the numerically computed field
at the nodes of the mesh.

• method ({‘nearest’, ‘linear’, ‘cubic’}, optional) – Type of the interpolation. The
default is linear.

Returns ndarray – 2D numpy array, the projected field values at the physical DIC grid points.

See also:

project_onto_mesh(), scipy.interpolate.griddata()

Examples

The DIC grid and the nodal finite element values (interpolated in-between, which is an errenous way to
visualize discontinuous functions) can be seen in the upper left and lower left figures, respectively.

>>> from grains.dic import DIC
>>> from grains.geometry import TriMesh
>>> x_grid, y_grid = np.mgrid[-1:1:100j, 1:2:50j]
>>> exact_solution = lambda x, y: 1 - (x + y**2) * np.sign(x)
>>> grid = DIC(exact_solution(x_grid, y_grid).T, exact_solution(x_grid,y_
→˓grid).T)
>>> grid.set_transformation((-1, 2), 50)

The finite element solution is obtained at the nodes (upper right figure) of the mesh. Here, we assumed
that the nodes are sampled from a uniformly random distribution on [−1, 1] × [1, 2].

>>> n_nodes = 100 # modify this to see how good the interpolated solution is

For the sake of this example, we also assume that the nodal values are “exact”, i.e. they admit the function
values at the nodes. In reality, of course, this will not be the case, but this allows us to investigate the
effect moving from the FE mesh to the DIC grid.

>>> mesh = TriMesh(*TriMesh.sample_mesh(1, n_nodes))
>>> fe_values = exact_solution(mesh.vertices[:, 0], mesh.vertices[:, 1])
>>> mesh.associate_field(fe_values)
>>> interpolated = grid.project_onto_grid(mesh.vertices, fe_values, method=
→˓'linear')

The FE field available at the nodes are interpolated at the DIC grid points, as shown in the lower right
figure. Note that no extrapolation is performed, so values are not computed at the grid points lying outside
the convex hull of the finite element nodes.

>>> ax = []
>>> ax.append(plt.subplot(221))
>>> plt.plot(x_grid, y_grid, 'k.', ms=1)
>>> plt.title('DIC grid')
>>> ax.append(plt.subplot(222))
>>> plt.plot(mesh.vertices[:, 0], mesh.vertices[:, 1], 'k.', ms=1)
>>> plt.title('FE nodes')
>>> ax.append(plt.subplot(223))
>>> mesh.plot_field(0, ax=ax[-1])
>>> plt.title('FE field')
>>> ax.append(plt.subplot(224))
>>> plt.imshow(interpolated, extent=(-1, 1, 1, 2), origin='lower', vmin=-4,
→˓vmax = 5)

(continues on next page)

138 Chapter 24. DIC

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html#scipy.interpolate.griddata

CristalX, Release 1.1.0

(continued from previous page)

>>> plt.title('FE field interpolated at the DIC grid')
>>> plt.tight_layout()
>>> for a in ax:
... a.set_aspect('equal', 'box')
>>> plt.show()

1.0 0.5 0.0 0.5 1.0
1.0

1.5

2.0
DIC grid

1.0 0.5 0.0 0.5 1.0
1.0

1.5

2.0
FE nodes

0.5 0.0 0.5

1.25

1.50

1.75

FE field

1.0 0.5 0.0 0.5 1.0
1.00

1.25

1.50

1.75

2.00
FE field interpolated at the DIC grid

You are invited to modify this example to simulate a finer mesh by increasing n_nodes. Also try different
interpolation techniques.

project_onto_mesh(nodes, method='linear')
Project the experimental displacement field onto a mesh.

Parameters nodes (ndarray) – 2D numpy array with 2 columns, each row corresponding to a
node of the mesh, and the two columns giving the Cartesian coordinates of the nodes.

Returns

• u_nodes, v_nodes (ndarray) – 1D numpy arrays (vectors), the components of the
projected displacement field at the given nodes.

• method ({‘nearest’, ‘linear’, ‘cubic’}, optional) – Type of the interpolation. The
default is linear.

See also:

project_onto_grid()

24.2. Functions 139

CristalX, Release 1.1.0

Examples

Suppose we have measured field data, obtained by DIC. The experimental field values are obtained as an
image. The pixel centers of this image form a grid, each grid point having an associated scalar value, the
value of the measured field. In this example, we pretend that the measured field is given as a function. The
DIC grid and the measured field values can be seen in the upper left and lower left figures, respectively.

>>> from grains.dic import DIC
>>> from grains.geometry import TriMesh
>>> x_grid, y_grid = np.mgrid[-1:1:100j, 1:2:50j]
>>> exact_solution = lambda x, y: 1 - (x + y**2) * np.sign(x)
>>> grid = DIC(exact_solution(x_grid, y_grid).T, exact_solution(x_grid,y_
→˓grid).T)

The finite element solution is obtained at the nodes (upper right figure) of the mesh. Here, we assumed
that the nodes are sampled from a uniformly random distribution on [−1, 1] × [1, 2].

>>> n_nodes = 100 # modify this to see how good the interpolated solution is
>>> mesh = TriMesh(*TriMesh.sample_mesh(1, n_nodes))

For the sake of this example, we also assume that the nodal values are “exact”, i.e. they are the function
values at the nodes. In reality, of course, this will not be the case, but this allows us to investigate the
effect moving from the FE mesh to the DIC grid.

>>> grid.set_transformation((-1, 2), 50)
>>> fe_values = exact_solution(mesh.vertices[:, 0], mesh.vertices[:, 1])
>>> interpolated = grid.project_onto_mesh(mesh.vertices, 'nearest')

The FE solution available at the nodes are interpolated at the DIC grid points, as shown in the lower
right figure. Interpolation with continuous functions cannot resolve well the discontinuity present in the
“exact solution”, i.e. in the measurement data. A discontinuous manufactured solution was intentionally
prepared to illustrate this.

>>> ax = []
>>> ax.append(plt.subplot(221))
>>> grid.plot_physicalgrid(ax[0])
>>> plt.title('DIC grid')
>>> ax.append(plt.subplot(222))
>>> mesh.plot('k.', ax=ax[1], markersize=1)
>>> plt.title('FE nodes')
>>> ax.append(plt.subplot(223))
>>> plt.imshow(exact_solution(x_grid, y_grid).T, extent=(-1, 1, 1, 2),
→˓origin='lower',
... vmin=-4, vmax = 5)
>>> plt.title('Exact solution on the DIC grid')
>>> ax.append(plt.subplot(224))
>>> interpolated[0][np.isnan(interpolated[0])] = 0
>>> mesh.associate_field(interpolated[0])
>>> mesh.plot_field(0, show_mesh=False, ax=ax[3])
>>> plt.title('FE solution interpolated at the DIC grid')
>>> plt.show()

You are invited to modify this example to simulate a finer mesh by increasing n_nodes. Also try different
interpolation techniques.

set_transformation(origin, pixels_per_physicalunit)
Sets the transformation rule between the pixel and the physical coordinate systems.

140 Chapter 24. DIC

CristalX, Release 1.1.0

1.0 0.5 0.0 0.5 1.0
1.0

1.5

2.0
DIC grid

1.0 0.5 0.0 0.5 1.0
1.0

1.5

2.0
FE nodes

1.0 0.5 0.0 0.5 1.0
1.00
1.25
1.50
1.75
2.00

Exact solution on the DIC grid

0.5 0.0 0.5

1.25
1.50
1.75

FE solution interpolated at the DIC grid

24.2. Functions 141

CristalX, Release 1.1.0

To determine the position and the size of the DIC image in the physical space, a transformation rule needs
to be given, as described in the Notes section of the DIC class.

Parameters

• origin (tuple) – 2-tuple of float, the coordinates of the origin of the DIC grid (upper
left corner) in the physical coordinate system.

• pixels_per_physicalunit (float)

Returns None

strain(strain_measure)
Computes the strain tensor from the displacement vector.

The symmetric strain tensor 𝜀 with components

𝜀 =

(︂
𝜀11 𝜀12
𝜀21 𝜀22

)︂
is computed for the given strain measure. The partial derivatives of the displacement field (𝑢, 𝑣), available
on an 𝑚× 𝑛 grid, are computed with numerical differentiation with second order accuracy.

Parameters strain_measure ({‘infinitesimal’, ‘Green-Lagrange’}) – One of the following
strain measures.

• ‘infinitesimal’

𝜀11 =
𝜕𝑢

𝜕𝑥

𝜀12 =
1

2

(︂
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

)︂
𝜀22 =

𝜕𝑣

𝜕𝑦

• ‘Green-Lagrange’

𝜀11 =
1

2

(︃
2
𝜕𝑢

𝜕𝑥
+

(︂
𝜕𝑢

𝜕𝑥

)︂2

+

(︂
𝜕𝑣

𝜕𝑥

)︂2
)︃

𝜀12 =
1

2

(︂
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

)︂
𝜀22 =

1

2

(︃
2
𝜕𝑣

𝜕𝑦
+

(︂
𝜕𝑢

𝜕𝑦

)︂2

+

(︂
𝜕𝑣

𝜕𝑦

)︂2
)︃

Returns strain_tensor (ndarray) – Components of the strain tensor as an 𝑚 × 𝑛 × 3 array.
The first two dimensions correspond to the grid points they are determined at, the third
dimension gives the components of the tensor in the following order: 𝜀11, 𝜀12, 𝜀22.

See also:

equivalent_strain(), plot_strain(), numpy.gradient()

142 Chapter 24. DIC

https://numpy.org/doc/stable/reference/generated/numpy.gradient.html#numpy.gradient

CristalX, Release 1.1.0

Notes

The derivatives of the displacement field are computed in the the physical coordinate system.

Examples

Consider a rectangular body with a linear displacement function in horizontal direction and no displace-
ment vertically. The deformation of the body is such that only the horizontal strain is nonzero.

>>> u = np.array([[0, 1e-3, 2e-3, 3e-3], [0, 1e-3, 2e-3, 3e-3], [0, 1e-3, 2e-
→˓3, 3e-3]])
>>> v = np.zeros((3,4))
>>> d = DIC(u, v)
>>> E = d.strain('infinitesimal')
>>> E[:, :, 0]
array([[0.001, 0.001, 0.001, 0.001],

[0.001, 0.001, 0.001, 0.001],
[0.001, 0.001, 0.001, 0.001]])

>>> np.allclose(E[:, :, 2], 0)
True
>>> np.allclose(E[:, :, 1], 0)
True

The Green-Lagrange strain tensor is slightly different. Comparing with the infinitesimal strain tensor
shows how good the assumption of small deformations is.

>>> E_gl = d.strain('Green-Lagrange')
>>> E_gl[:, :, 0] - E[:, :, 0]
array([[5.e-07, 5.e-07, 5.e-07, 5.e-07],

[5.e-07, 5.e-07, 5.e-07, 5.e-07],
[5.e-07, 5.e-07, 5.e-07, 5.e-07]])

The other two strain components remain zero.

>>> np.allclose(E_gl[:, :, 1:2], 0)
True

grains.dic.plot_strain(strain, minval=None, maxval=None, colorbar=True, label='')
Plots a scalar strain field.

Parameters

• strain (ndarray) – Scalar strain field sampled on an m-by-n grid, given as a 2D numpy
array.

• minval, maxval (float, optional) – Set the color scaling for the image by fixing the values
that map to the colormap color limits. If minval is not provided, the limit is determined
from the minimum value of the data. Similarly for maxval.

• colorbar (bool, optional) – If True, a horizontal colorbar is placed below the strain map.
The default is True.

• label (str, optional) – Label describing the strain field. LaTeX code is also accepted, e.g.
r’$varepsilon_{yy}$’. If not given, no text is displayed.

Returns None

See also:

24.2. Functions 143

CristalX, Release 1.1.0

DIC.strain()

Deprecated since version 1.1.0: This will be removed in 1.3.0. This function will be a static method of the DIC
class. See also the deprecation warning of DIC.plot_strain().

144 Chapter 24. DIC

CHAPTER

TWENTYFIVE

SIMULATION

25.1 Functions

data_Pierre Yield stresses and average grain diameters from Pierre’s
thesis.

hallpetch_constants Determines the two Hall-Petch constants.
hallpetch Computes the yield stress from the Hall-Petch relation.
hallpetch_plot Plots the Hall-Petch formula for given grain sizes and

yield stresses.
change_domain Extends or crops the domain an image fills.
nature_of_deformation Characterizes the intergranular/intragranular deforma-

tions.

25.1.1 grains.simulation.data_Pierre

grains.simulation.data_Pierre()
Yield stresses and average grain diameters from Pierre’s thesis.

Returns

• sigma_y (list of floats) – Yield stresses.

• d (list of floats) – Diameters of the grains.

25.1.2 grains.simulation.hallpetch_constants

grains.simulation.hallpetch_constants(sigma_y, d)
Determines the two Hall-Petch constants. Given available measurements for the grains sizes and the yield
stresses, the two constants in the Hall-Petch formula are computed.

Parameters

• sigma_y (list of floats) – Yield stresses.

• d (list of floats) – Diameters of the grains.

Returns

• sigma_0 (float) – Starting stress for dislocation movement (material constant).

• k (float) – Strengthening coefficient (material constant).

145

CristalX, Release 1.1.0

Notes

If two data points are given in the inputs (corresponding to two measurements), the output parameters have
unique values:

k = (sigma_y[0] - sigma_y[1]) / (1/sqrt(d[0]) - 1/sqrt(d[1])) sigma_0 = sigma_y[0] - k/sqrt(d[0])

If there are more than two measurements, the resulting linear system is overdetermined. In both cases, the
outputs are determined using least squares fitting.

25.1.3 grains.simulation.hallpetch

grains.simulation.hallpetch(sigma_0, k, d)
Computes the yield stress from the Hall-Petch relation.

Parameters

• sigma_0 (float) – Starting stress for dislocation movement (material constant).

• k (float) – Strengthening coefficient (material constant).

• d (float or list of floats) – Diameter of the grain.

Returns sigma_y (float or list of floats) – Yield stress.

25.1.4 grains.simulation.hallpetch_plot

grains.simulation.hallpetch_plot(sigma_y, d, units=('MPa', 'mm'))
Plots the Hall-Petch formula for given grain sizes and yield stresses.

Parameters

• sigma_y (ndarray) – Yield stresses.

• d (ndarray) – Grain diameters.

• units (2-tuple of str, optional) – Units for the yield stress and the grain diameters. The
default is (“MPa”,”mm”).

Returns fig (matplotlib.figure.Figure) – The figure object is returned in case further manipulations
are necessary.

25.1.5 grains.simulation.change_domain

grains.simulation.change_domain(image, left, right, bottom, top, padding_value=nan)
Extends or crops the domain an image fills.

The original image is extended, cropped or left unchanged in the left, right, bottom and top directions by padding
the corresponding 2D or 3D array with a given value or removing existing elements. Non-integer image length
is avoided by rounding up. This choice prevents ending up with an empty image during cropping or no added
pixel during extension.

Parameters

• image (ndarray) – 2D or 3D numpy array representing the original image.

• left, right (float) – When positive, the domain is extended, when negative, the domain is
cropped by the given value relative to the image width.

146 Chapter 25. Simulation

CristalX, Release 1.1.0

• bottom, top (float) – When positive, the domain is extended, when negative, the domain
is cropped by the given value relative to the image height.

• padding_value (float, optional) – Value for the added pixels. The default is numpy.nan.

Returns changed_image (ndarray) – 2D or 3D numpy array representing the modified domain.

Examples

Crop an image at the top, extended it at the bottom and on the left, and leave it unchanged on the right. Note the
rounding for non-integer pixels.

>>> import numpy as np
>>> image = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]])
>>> modified = change_domain(image, 0.5, 0, 1/3, -1/3, 0)
>>> image # no in-place modification, the original image is not overwritten
array([[0.1, 0.2, 0.3],

[0.4, 0.5, 0.6],
[0.7, 0.8, 0.9]])

>>> modified
array([[0. , 0. , 0.4, 0.5, 0.6],

[0. , 0. , 0.7, 0.8, 0.9],
[0. , 0. , 0. , 0. , 0.]])

25.1.6 grains.simulation.nature_of_deformation

grains.simulation.nature_of_deformation(microstructure, strain_field, interface_width=3, vi-
sualize=True)

Characterizes the intergranular/intragranular deformations.

To decide whether the strain localization is intergranular (happens along grain boundaries, also called interfaces)
or intragranular in a given microstructure, the strain field is projected on the microstructure. Here, by strain field
we mean a scalar field, often called equivalent strain that is derived from a strain tensor.

It is irrelevant for this function whether the strain field is obtained from a numerical simulation or from a (post-
processed) full-field measurement. All what matters is that the strain field be available on a grid of the same size
as the microstructure.

The strain field is assumed to be localized on an interface if its neighborhood, with band width defined by the
user, contains higher strain values than what is outside the band (i.e. the grain interiors). A too large band
width identifies small grains to have boundary only, without any interior. This means that even if the strain field
in reality localizes inside such small grains, the localization is classified as intergranular. However, even for
extreme deformations, one should not expect that the strain localizes on an interface with a single-point width.
Moreover, using a too small band width is susceptible to the exact position of the interfaces, which are extracted
from the grain microstructure. A judicial balance needs to be achieved in practice.

Parameters

• microstructure (ndarray) – Labelled image corresponding to the segmented grains in a
grain microstructure.

• strain_field (ndarray) – Discrete scalar field of the same size as the microstructure.

• interface_width (int, optional) – Thickness of the band around the interfaces.

• visualize (bool, optional) – If True, three plots are created. Two of them show the defor-
mation field within the bands and outside the bands. They are linked together, so when

25.1. Functions 147

CristalX, Release 1.1.0

you pan or zoom on one, the other plot will follow. The third plot contains two his-
tograms on top of each other, giving the frequency of the strain values within the bands
and outside the bands.

Returns

• boundary_strain (ndarray) – Copy of strain_field, but values outside the band are
set to NaN.

• bulk_strain (ndarray) – Copy of strain_field, but values within the band are set to
NaN.

• bands (ndarray) – Boolean array of the same size as strain_field, with True values
corresponding to the band.

See also:

grains.dic.DIC.strain() Computes a strain tensor from the displacement field.

grains.dic.DIC.equivalent_strain() Extracts a scalar quantity from a strain tensor.

matplotlib.pyplot.hist() Plots a histogram.

Notes

1. From the modelling viewpoint, it is important to know whether the strain localizes to the grain bound-
aries or it is dominant within the grains as well. In the former case, simplifications in the models save
computational time in the simulations.

2. In dynamics, the evolution of the strain field is relevant. E.g. an initially intergranular deformation can
turn into diffuse localization that occurs within the grains as well. In that case, a strain field must be
obtained at each time step, and this function can be called for each such instance.

Examples

The following figure was created by this function with visualize set to True and band_width chosen to
be 3.

grains.simulation.change_domain(image, left, right, bottom, top, padding_value=nan)
Extends or crops the domain an image fills.

The original image is extended, cropped or left unchanged in the left, right, bottom and top directions by padding
the corresponding 2D or 3D array with a given value or removing existing elements. Non-integer image length
is avoided by rounding up. This choice prevents ending up with an empty image during cropping or no added
pixel during extension.

Parameters

• image (ndarray) – 2D or 3D numpy array representing the original image.

• left, right (float) – When positive, the domain is extended, when negative, the domain is
cropped by the given value relative to the image width.

• bottom, top (float) – When positive, the domain is extended, when negative, the domain
is cropped by the given value relative to the image height.

• padding_value (float, optional) – Value for the added pixels. The default is numpy.nan.

Returns changed_image (ndarray) – 2D or 3D numpy array representing the modified domain.

148 Chapter 25. Simulation

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html#matplotlib.pyplot.hist

CristalX, Release 1.1.0

Examples

Crop an image at the top, extended it at the bottom and on the left, and leave it unchanged on the right. Note the
rounding for non-integer pixels.

>>> import numpy as np
>>> image = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]])
>>> modified = change_domain(image, 0.5, 0, 1/3, -1/3, 0)
>>> image # no in-place modification, the original image is not overwritten
array([[0.1, 0.2, 0.3],

[0.4, 0.5, 0.6],
[0.7, 0.8, 0.9]])

>>> modified
array([[0. , 0. , 0.4, 0.5, 0.6],

[0. , 0. , 0.7, 0.8, 0.9],
[0. , 0. , 0. , 0. , 0.]])

grains.simulation.data_Pierre()
Yield stresses and average grain diameters from Pierre’s thesis.

Returns

• sigma_y (list of floats) – Yield stresses.

• d (list of floats) – Diameters of the grains.

grains.simulation.hallpetch(sigma_0, k, d)
Computes the yield stress from the Hall-Petch relation.

Parameters

• sigma_0 (float) – Starting stress for dislocation movement (material constant).

• k (float) – Strengthening coefficient (material constant).

• d (float or list of floats) – Diameter of the grain.

Returns sigma_y (float or list of floats) – Yield stress.

grains.simulation.hallpetch_constants(sigma_y, d)
Determines the two Hall-Petch constants. Given available measurements for the grains sizes and the yield
stresses, the two constants in the Hall-Petch formula are computed.

Parameters

• sigma_y (list of floats) – Yield stresses.

• d (list of floats) – Diameters of the grains.

Returns

• sigma_0 (float) – Starting stress for dislocation movement (material constant).

• k (float) – Strengthening coefficient (material constant).

25.1. Functions 149

CristalX, Release 1.1.0

Notes

If two data points are given in the inputs (corresponding to two measurements), the output parameters have
unique values:

k = (sigma_y[0] - sigma_y[1]) / (1/sqrt(d[0]) - 1/sqrt(d[1])) sigma_0 = sigma_y[0] - k/sqrt(d[0])

If there are more than two measurements, the resulting linear system is overdetermined. In both cases, the
outputs are determined using least squares fitting.

grains.simulation.hallpetch_plot(sigma_y, d, units=('MPa', 'mm'))
Plots the Hall-Petch formula for given grain sizes and yield stresses.

Parameters

• sigma_y (ndarray) – Yield stresses.

• d (ndarray) – Grain diameters.

• units (2-tuple of str, optional) – Units for the yield stress and the grain diameters. The
default is (“MPa”,”mm”).

Returns fig (matplotlib.figure.Figure) – The figure object is returned in case further manipulations
are necessary.

grains.simulation.nature_of_deformation(microstructure, strain_field, interface_width=3, vi-
sualize=True)

Characterizes the intergranular/intragranular deformations.

To decide whether the strain localization is intergranular (happens along grain boundaries, also called interfaces)
or intragranular in a given microstructure, the strain field is projected on the microstructure. Here, by strain field
we mean a scalar field, often called equivalent strain that is derived from a strain tensor.

It is irrelevant for this function whether the strain field is obtained from a numerical simulation or from a (post-
processed) full-field measurement. All what matters is that the strain field be available on a grid of the same size
as the microstructure.

The strain field is assumed to be localized on an interface if its neighborhood, with band width defined by the
user, contains higher strain values than what is outside the band (i.e. the grain interiors). A too large band
width identifies small grains to have boundary only, without any interior. This means that even if the strain field
in reality localizes inside such small grains, the localization is classified as intergranular. However, even for
extreme deformations, one should not expect that the strain localizes on an interface with a single-point width.
Moreover, using a too small band width is susceptible to the exact position of the interfaces, which are extracted
from the grain microstructure. A judicial balance needs to be achieved in practice.

Parameters

• microstructure (ndarray) – Labelled image corresponding to the segmented grains in a
grain microstructure.

• strain_field (ndarray) – Discrete scalar field of the same size as the microstructure.

• interface_width (int, optional) – Thickness of the band around the interfaces.

• visualize (bool, optional) – If True, three plots are created. Two of them show the defor-
mation field within the bands and outside the bands. They are linked together, so when
you pan or zoom on one, the other plot will follow. The third plot contains two his-
tograms on top of each other, giving the frequency of the strain values within the bands
and outside the bands.

Returns

• boundary_strain (ndarray) – Copy of strain_field, but values outside the band are
set to NaN.

150 Chapter 25. Simulation

CristalX, Release 1.1.0

• bulk_strain (ndarray) – Copy of strain_field, but values within the band are set to
NaN.

• bands (ndarray) – Boolean array of the same size as strain_field, with True values
corresponding to the band.

See also:

grains.dic.DIC.strain() Computes a strain tensor from the displacement field.

grains.dic.DIC.equivalent_strain() Extracts a scalar quantity from a strain tensor.

matplotlib.pyplot.hist() Plots a histogram.

Notes

1. From the modelling viewpoint, it is important to know whether the strain localizes to the grain bound-
aries or it is dominant within the grains as well. In the former case, simplifications in the models save
computational time in the simulations.

2. In dynamics, the evolution of the strain field is relevant. E.g. an initially intergranular deformation can
turn into diffuse localization that occurs within the grains as well. In that case, a strain field must be
obtained at each time step, and this function can be called for each such instance.

Examples

The following figure was created by this function with visualize set to True and band_width chosen to
be 3.

25.1. Functions 151

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html#matplotlib.pyplot.hist

CristalX, Release 1.1.0

152 Chapter 25. Simulation

CHAPTER

TWENTYSIX

UTILITIES

This module provides general utility functions used by the grains package. The specific helper functions reside in
the proper module. For example, a function that works on a general list goes here, but a computational geometry
algorithm goes to the geometry module. The functions in the utils module can be interesting for other projects too,
partly because of their general scope, and partly because of the few dependencies.

26.1 Functions

duplicates Set of duplicate elements in a sequence.
toggle Return True for False values and False for True values

in a list.
index_list Index a list by another list.
flatten_list Merge a list of lists to a single list.
argsorted Return the indices that would sort a list or a tuple.
map_inplace Apply a function to each member of an iterable in-place.
non_unique Finds indices of non-unique elements in a 1D or 2D

ndarray.
parse_kwargs Compares keyword arguments with defaults.
compress Creates a zip archive from a single file.
decompress Decompresses the contents of a zip archive into the cur-

rent directory.
decompress_inmemory Decompresses the contents of a zip archive into a dic-

tionary.
neighborhood Neighboring points to a grid point.

26.1.1 grains.utils.duplicates

grains.utils.duplicates(sequence)
Set of duplicate elements in a sequence.

Parameters sequence (sequence types (list, tuple, string, etc.)) – Sequence possibly containing
repeating elements.

Returns set – Set of unique values.

153

CristalX, Release 1.1.0

Notes

Copied from https://stackoverflow.com/a/9836685/4892892

Examples

Note that the order of the elements in the resulting set does not matter.

>>> a = [1, 2, 3, 2, 1, 5, 6, 5, 5, 5] # list
>>> duplicates(a)
{1, 2, 5}
>>> a = (1, 1, 0, -1, -1, 0) # tuple
>>> duplicates(a)
{0, 1, -1}
>>> a = 'abbcdkc' # string
>>> duplicates(a)
{'c', 'b'}

26.1.2 grains.utils.toggle

grains.utils.toggle(lst)
Return True for False values and False for True values in a list.

Parameters lst (list) – An arbitrary list, possibly containing other lists.

Returns list – Element-wise logical not operator applied on the input list.

Notes

Solution taken from https://stackoverflow.com/a/51122372/4892892.

Examples

>>> toggle([True, False])
[False, True]
>>> toggle(['h', 0, 2.3, -2, 5, []])
[False, True, False, False, False, True]

26.1.3 grains.utils.index_list

grains.utils.index_list(lst, indices)
Index a list by another list.

Parameters

• lst (list) – List to be indexed.

• indices (list) – Indices of the original list that will form the new list.

Returns list – Members of lst, selected by indices.

154 Chapter 26. Utilities

https://stackoverflow.com/a/9836685/4892892
https://stackoverflow.com/a/51122372/4892892

CristalX, Release 1.1.0

Examples

>>> index_list(['c', ['nested', 'list'], 13], [1, 2])
[['nested', 'list'], 13]

26.1.4 grains.utils.flatten_list

grains.utils.flatten_list(nested_list)
Merge a list of lists to a single list.

Parameters nested_list (list) – List containing other lists.

Returns list – Flattened list.

Notes

• Only a single level (i.e. list of lists) is handled, see the second example.

• Several methods, such as list comprehension, monoid and loops, are proposed in https://stackoverflow.
com/questions/952914/how-to-make-a-flat-list-out-of-list-of-lists. Here, the list comprehension ap-
proach is used.

Examples

>>> nested_list = [['some'], ['items']]
>>> flatten_list(nested_list)
['some', 'items']
>>> multiply_nested_list = [[['item'], 'within', 'item']]
>>> flatten_list(multiply_nested_list)
[['item'], 'within', 'item']

26.1.5 grains.utils.argsorted

grains.utils.argsorted(sequence, reverse=False)
Return the indices that would sort a list or a tuple.

Implementation is taken from https://stackoverflow.com/a/6979121/4892892.

Parameters

• sequence (list, tuple) – Input sequence in which the sorted indices to be found.

• reverse (bool) – If set to True, then the elements are sorted as if each comparison was
reversed.

Returns list – List of indices that would sort the input list/tuple.

See also:

sorted(), numpy.argsort()

26.1. Functions 155

https://stackoverflow.com/questions/952914/how-to-make-a-flat-list-out-of-list-of-lists
https://stackoverflow.com/questions/952914/how-to-make-a-flat-list-out-of-list-of-lists
https://stackoverflow.com/a/6979121/4892892
https://docs.python.org/3/library/functions.html#sorted
https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort

CristalX, Release 1.1.0

Examples

>>> argsorted([2, 1.1, 1.1])
[1, 2, 0]
>>> argsorted([2, 1.1, 1.1], reverse=True)
[0, 1, 2]
>>> argsorted(())
[]

26.1.6 grains.utils.map_inplace

grains.utils.map_inplace(function, __iterable)
Apply a function to each member of an iterable in-place.

Parameters

• function (function object) – Function to be applied to the entries of the iterable.

• __iterable (iterable) – Iterable.

Notes

Comprehensions or functional tools work on iterators, thereby not modifying the original container (https://
stackoverflow.com/a/4148523/4892892). For in-place modification, the conventional for loop approach is used
(https://stackoverflow.com/a/4148525/4892892).

Examples

>>> lst = ['2', 2]; func = lambda x: x*2
>>> map_inplace(func, lst); lst
['22', 4]
>>> lifespan = {'cat': 15, 'dog': 12}; die_early = lambda x: x/2
>>> map_inplace(die_early, lifespan); lifespan
{'cat': 7.5, 'dog': 6.0}

26.1.7 grains.utils.non_unique

grains.utils.non_unique(array, axis=None)
Finds indices of non-unique elements in a 1D or 2D ndarray.

Parameters

• array (ndarray) – Array in which the non-unique elements are searched.

• axis ({None, 0, 1}, optional) – The axis to operate on. If None, array will be flattened.
If an integer, the subarrays indexed by the given axis will be flattened and treated as the
elements of a 1-D array with the dimension of the given axis. Object arrays or structured
arrays that contain objects are not supported if the axis kwarg is used. The default is
None.

Returns

• nonunique_values (list) – Unique (individual, row or column) entries.

156 Chapter 26. Utilities

https://stackoverflow.com/a/4148523/4892892
https://stackoverflow.com/a/4148523/4892892
https://stackoverflow.com/a/4148525/4892892

CristalX, Release 1.1.0

• nonunique_indices (list) – Each element of the list corresponds to non-unique elements,
whose indices are given in a 1D numpy array.

Examples

In a 1D array, the repeated values and their indices are found by

>>> val, idx = non_unique(np.array([1, -1, 0, -1, 2, 5, 0, -1]))
>>> val
[-1, 0]
>>> idx
[array([1, 3, 7]), array([2, 6])]

In the matrix below, we can see that rows 0 and 2 are identical, as well as rows 1 and 4.

>>> val, idx = non_unique(np.array([[1, 3], [2, 4], [1, 3], [-1, 0], [2, 4]]),
→˓axis=0)
>>> val
[array([1, 3]), array([2, 4])]
>>> idx
[array([0, 2]), array([1, 4])]

By transposing the matrix above, the same holds for the columns.

>>> val, idx = non_unique(np.array([[1, 2, 1, -1, 2], [3, 4, 3, 0, 4]]), axis=1)
>>> val
[array([1, 3]), array([2, 4])]
>>> idx
[array([0, 2]), array([1, 4])]

If the dimensions along which to find the duplicates are not given, the input is flattened and the indexing happens
in C-order (row-wise).

>>> val, idx = non_unique(np.array([[1, 2, 1, -1, 2], [3, 4, 3, 0, 4]]))
>>> val
[1, 2, 3, 4]
>>> idx
[array([0, 2]), array([1, 4]), array([5, 7]), array([6, 9])]

26.1.8 grains.utils.parse_kwargs

grains.utils.parse_kwargs(kwargs, defaults)
Compares keyword arguments with defaults.

Allows processing keyword arguments supplied to a function by the user by comparing them with an admissible
set of options defined by the developer. There are three cases:

1. The keyword given by the user is present in the set the developer provides. Then the value
belonging to the keyword overrides the default value.

2. The keyword given by the user is not present in the set the developer provides. In this case, the
unrecognized keyword, along with its value, is saved separately.

3. The keyword existing in the set the developer provides is not given by the user. Then the default
value is used.

Parameters

26.1. Functions 157

CristalX, Release 1.1.0

• kwargs (dict) – Keyword arguments (parameter-value pairs) passed to a function.

• defaults (dict) – Default parameter-value pairs.

Returns

• parsed (dict) – Dictionary with the same keys as defaults, the parsed parameter-value
pairs.

• unknown (dict) – Dictionary containing the parameter-value pairs not present in
defaults.

Notes

The default values, given in the input dictionary defaults, are never overwritten.

Examples

>>> default_options = {'opt1': 1, 'opt2': 'string', 'opt3': [-1, 0]}
>>> user_options = {'opt3': [2, 3, -1], 'opt2': 'string', 'opt4': -2.14}
>>> parsed_options, unknown_options = parse_kwargs(user_options, default_options)
>>> parsed_options
{'opt1': 1, 'opt2': 'string', 'opt3': [2, 3, -1]}
>>> unknown_options
{'opt4': -2.14}

26.1.9 grains.utils.compress

grains.utils.compress(filename, level=9)
Creates a zip archive from a single file.

Parameters

• filename (str) – Name of the file to be compressed.

• level (int, optional) – Level of compression. Integers 0 through 9 are accepted. The
default is 9.

Returns None.

See also:

zipfile.ZipFile

26.1.10 grains.utils.decompress

grains.utils.decompress(filename, path=None)
Decompresses the contents of a zip archive into the current directory.

Parameters

• filename (str) – Name of the zip archive.

• path (str, optional) – Directory to extract to. The default is the directory the function is
called from.

158 Chapter 26. Utilities

https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile

CristalX, Release 1.1.0

See also:

zipfile.ZipFile

26.1.11 grains.utils.decompress_inmemory

grains.utils.decompress_inmemory(filename)
Decompresses the contents of a zip archive into a dictionary.

Parameters filename (str) – Name of the zip archive.

Returns data (dict) – The keys of the dictionary are the compressed file names (without extension),
the corresponding values are their contents.

See also:

zipfile.ZipFile

26.1.12 grains.utils.neighborhood

grains.utils.neighborhood(center, radius, norm, method='ball', bounds=None)
Neighboring points to a grid point.

Given a point in a subspace of Z𝑛, the neighboring points are determined based on the specified rules.

Todo: Currently, the neighbors are deterministically but not systematically ordered. Apart from testing pur-
poses, this does not seem to be a big issue. Still, a logical ordering is desirable. E.g. ordering in increasing
coordinate values, first in the first dimension and lastly in the last dimension.

Parameters

• center (tuple of int) – Point 𝑥0 around which the neighborhood is searched. It must be an
n-tuple of integers, where 𝑛 is the spatial dimension.

• radius (int, positive) – Radius of the ball or sphere in which the neighbors are searched.
If the radius is 1, the immediate neighbors are returned.

• norm ({1, inf}) – Type of the vector norm ‖𝑥− 𝑥0‖, where 𝑥 is a point whose distance is
searched from the center 𝑥0.

Type Name Definition
1 1-norm ‖𝑥‖1 =

∑︀𝑛
𝑖=1 |𝑥𝑖|

numpy.inf maximum norm ‖𝑥‖∞ = max{|𝑥1|, . . . , |𝑥𝑛|}

where inf means numpy’s np.inf object.

• method ({‘ball’, ‘sphere’}, optional) – Specifies the criterion of how to decide whether a
point 𝑥 is in the neighborhood of 𝑥0. The default is ‘ball’.

For ‘ball’:

‖𝑥− 𝑥0‖ ≤ 𝑟

For ‘sphere’:

‖𝑥− 𝑥0‖ = 𝑟

26.1. Functions 159

https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile

CristalX, Release 1.1.0

where 𝑟 is the radius passed as the radius parameter and the type of the norm is taken
based on the norm input parameter.

• bounds (list of tuple, optional) – Restricts the neighbors within a box. The dimensions
of the n-dimensional box are given as a list of 2-tuples: [(x_1_min, x_1_max), . . . ,
(x_n_min, x_n_max)]. The default value is an unbounded box in all dimensions. Use
np.inf to indicate unbounded values.

Returns neighbors (tuple of ndarray) – Tuple of length n, each entry being a 1D numpy array: the
integer indices of the points that are in the neighborhood of center.

Notes

1. The von Neumann neighborhood with range 𝑟 is a special case when radius=r, norm=1 and
method='ball'.

2. The Moore neighborhood with range 𝑟 is a special case when radius=r, norm=np.inf and
method='ball'.

Examples

Find the Moore neighborhood with range 2 the point (1) on the half-line [0, inf).

>>> neighborhood((1,), 2, np.inf, bounds=[(0, np.inf)])
(array([0, 1, 2, 3]),)

Find the von Neumann neighborhood with range 2 around the point (2, 2), restricted on the domain [0, 4] x [0,
3].

>>> neighborhood((2, 2), 2, 1, bounds=[(0, 4), (0, 3)])
(array([2, 1, 2, 3, 0, 1, 2, 3, 4, 1, 2, 3]), array([0, 1, 1, 1, 2, 2, 2, 2, 2, 3,
→˓ 3, 3]))

Find the Moore neighborhood with range 1 around the point (0, -4) such that the neighbors lie on the half-plane
[0, 2] x (-inf, -4].

>>> neighborhood((0, -4), 1, np.inf, bounds=[(0, 2), (-np.inf, -4)])
(array([0, 1, 0, 1]), array([-5, -5, -4, -4]))

Find the sphere of radius 2, measured in the 1-norm, around the point (-1, 0, 3), within the half-space {(x,y,z) in
Z^3 | y>=0}.

>>> neighborhood((-1, 0, 3), 2, 1, 'sphere', [(-np.inf, np.inf), (0, np.inf), (-
→˓np.inf, np.inf)])
(array([-3, -2, -2, -1, -1, 0, 0, 1, -2, -1, -1, 0, -1]),
array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2]),
array([3, 2, 4, 1, 5, 2, 4, 3, 3, 2, 4, 3, 3]))

grains.utils.argsorted(sequence, reverse=False)
Return the indices that would sort a list or a tuple.

Implementation is taken from https://stackoverflow.com/a/6979121/4892892.

Parameters

• sequence (list, tuple) – Input sequence in which the sorted indices to be found.

160 Chapter 26. Utilities

https://mathworld.wolfram.com/vonNeumannNeighborhood.html
https://mathworld.wolfram.com/MooreNeighborhood.html
https://stackoverflow.com/a/6979121/4892892

CristalX, Release 1.1.0

• reverse (bool) – If set to True, then the elements are sorted as if each comparison was
reversed.

Returns list – List of indices that would sort the input list/tuple.

See also:

sorted(), numpy.argsort()

Examples

>>> argsorted([2, 1.1, 1.1])
[1, 2, 0]
>>> argsorted([2, 1.1, 1.1], reverse=True)
[0, 1, 2]
>>> argsorted(())
[]

grains.utils.compress(filename, level=9)
Creates a zip archive from a single file.

Parameters

• filename (str) – Name of the file to be compressed.

• level (int, optional) – Level of compression. Integers 0 through 9 are accepted. The
default is 9.

Returns None.

See also:

zipfile.ZipFile

grains.utils.decompress(filename, path=None)
Decompresses the contents of a zip archive into the current directory.

Parameters

• filename (str) – Name of the zip archive.

• path (str, optional) – Directory to extract to. The default is the directory the function is
called from.

See also:

zipfile.ZipFile

grains.utils.decompress_inmemory(filename)
Decompresses the contents of a zip archive into a dictionary.

Parameters filename (str) – Name of the zip archive.

Returns data (dict) – The keys of the dictionary are the compressed file names (without extension),
the corresponding values are their contents.

See also:

zipfile.ZipFile

grains.utils.duplicates(sequence)
Set of duplicate elements in a sequence.

26.1. Functions 161

https://docs.python.org/3/library/functions.html#sorted
https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort
https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile

CristalX, Release 1.1.0

Parameters sequence (sequence types (list, tuple, string, etc.)) – Sequence possibly containing
repeating elements.

Returns set – Set of unique values.

Notes

Copied from https://stackoverflow.com/a/9836685/4892892

Examples

Note that the order of the elements in the resulting set does not matter.

>>> a = [1, 2, 3, 2, 1, 5, 6, 5, 5, 5] # list
>>> duplicates(a)
{1, 2, 5}
>>> a = (1, 1, 0, -1, -1, 0) # tuple
>>> duplicates(a)
{0, 1, -1}
>>> a = 'abbcdkc' # string
>>> duplicates(a)
{'c', 'b'}

grains.utils.flatten_list(nested_list)
Merge a list of lists to a single list.

Parameters nested_list (list) – List containing other lists.

Returns list – Flattened list.

Notes

• Only a single level (i.e. list of lists) is handled, see the second example.

• Several methods, such as list comprehension, monoid and loops, are proposed in https://stackoverflow.
com/questions/952914/how-to-make-a-flat-list-out-of-list-of-lists. Here, the list comprehension ap-
proach is used.

Examples

>>> nested_list = [['some'], ['items']]
>>> flatten_list(nested_list)
['some', 'items']
>>> multiply_nested_list = [[['item'], 'within', 'item']]
>>> flatten_list(multiply_nested_list)
[['item'], 'within', 'item']

grains.utils.index_list(lst, indices)
Index a list by another list.

Parameters

• lst (list) – List to be indexed.

• indices (list) – Indices of the original list that will form the new list.

162 Chapter 26. Utilities

https://stackoverflow.com/a/9836685/4892892
https://stackoverflow.com/questions/952914/how-to-make-a-flat-list-out-of-list-of-lists
https://stackoverflow.com/questions/952914/how-to-make-a-flat-list-out-of-list-of-lists

CristalX, Release 1.1.0

Returns list – Members of lst, selected by indices.

Examples

>>> index_list(['c', ['nested', 'list'], 13], [1, 2])
[['nested', 'list'], 13]

grains.utils.map_inplace(function, __iterable)
Apply a function to each member of an iterable in-place.

Parameters

• function (function object) – Function to be applied to the entries of the iterable.

• __iterable (iterable) – Iterable.

Notes

Comprehensions or functional tools work on iterators, thereby not modifying the original container (https://
stackoverflow.com/a/4148523/4892892). For in-place modification, the conventional for loop approach is used
(https://stackoverflow.com/a/4148525/4892892).

Examples

>>> lst = ['2', 2]; func = lambda x: x*2
>>> map_inplace(func, lst); lst
['22', 4]
>>> lifespan = {'cat': 15, 'dog': 12}; die_early = lambda x: x/2
>>> map_inplace(die_early, lifespan); lifespan
{'cat': 7.5, 'dog': 6.0}

grains.utils.neighborhood(center, radius, norm, method='ball', bounds=None)
Neighboring points to a grid point.

Given a point in a subspace of Z𝑛, the neighboring points are determined based on the specified rules.

Todo: Currently, the neighbors are deterministically but not systematically ordered. Apart from testing pur-
poses, this does not seem to be a big issue. Still, a logical ordering is desirable. E.g. ordering in increasing
coordinate values, first in the first dimension and lastly in the last dimension.

Parameters

• center (tuple of int) – Point 𝑥0 around which the neighborhood is searched. It must be an
n-tuple of integers, where 𝑛 is the spatial dimension.

• radius (int, positive) – Radius of the ball or sphere in which the neighbors are searched.
If the radius is 1, the immediate neighbors are returned.

• norm ({1, inf}) – Type of the vector norm ‖𝑥− 𝑥0‖, where 𝑥 is a point whose distance is
searched from the center 𝑥0.

Type Name Definition
1 1-norm ‖𝑥‖1 =

∑︀𝑛
𝑖=1 |𝑥𝑖|

numpy.inf maximum norm ‖𝑥‖∞ = max{|𝑥1|, . . . , |𝑥𝑛|}

26.1. Functions 163

https://stackoverflow.com/a/4148523/4892892
https://stackoverflow.com/a/4148523/4892892
https://stackoverflow.com/a/4148525/4892892

CristalX, Release 1.1.0

where inf means numpy’s np.inf object.

• method ({‘ball’, ‘sphere’}, optional) – Specifies the criterion of how to decide whether a
point 𝑥 is in the neighborhood of 𝑥0. The default is ‘ball’.

For ‘ball’:

‖𝑥− 𝑥0‖ ≤ 𝑟

For ‘sphere’:

‖𝑥− 𝑥0‖ = 𝑟

where 𝑟 is the radius passed as the radius parameter and the type of the norm is taken
based on the norm input parameter.

• bounds (list of tuple, optional) – Restricts the neighbors within a box. The dimensions
of the n-dimensional box are given as a list of 2-tuples: [(x_1_min, x_1_max), . . . ,
(x_n_min, x_n_max)]. The default value is an unbounded box in all dimensions. Use
np.inf to indicate unbounded values.

Returns neighbors (tuple of ndarray) – Tuple of length n, each entry being a 1D numpy array: the
integer indices of the points that are in the neighborhood of center.

Notes

1. The von Neumann neighborhood with range 𝑟 is a special case when radius=r, norm=1 and
method='ball'.

2. The Moore neighborhood with range 𝑟 is a special case when radius=r, norm=np.inf and
method='ball'.

Examples

Find the Moore neighborhood with range 2 the point (1) on the half-line [0, inf).

>>> neighborhood((1,), 2, np.inf, bounds=[(0, np.inf)])
(array([0, 1, 2, 3]),)

Find the von Neumann neighborhood with range 2 around the point (2, 2), restricted on the domain [0, 4] x [0,
3].

>>> neighborhood((2, 2), 2, 1, bounds=[(0, 4), (0, 3)])
(array([2, 1, 2, 3, 0, 1, 2, 3, 4, 1, 2, 3]), array([0, 1, 1, 1, 2, 2, 2, 2, 2, 3,
→˓ 3, 3]))

Find the Moore neighborhood with range 1 around the point (0, -4) such that the neighbors lie on the half-plane
[0, 2] x (-inf, -4].

>>> neighborhood((0, -4), 1, np.inf, bounds=[(0, 2), (-np.inf, -4)])
(array([0, 1, 0, 1]), array([-5, -5, -4, -4]))

Find the sphere of radius 2, measured in the 1-norm, around the point (-1, 0, 3), within the half-space {(x,y,z) in
Z^3 | y>=0}.

164 Chapter 26. Utilities

https://mathworld.wolfram.com/vonNeumannNeighborhood.html
https://mathworld.wolfram.com/MooreNeighborhood.html

CristalX, Release 1.1.0

>>> neighborhood((-1, 0, 3), 2, 1, 'sphere', [(-np.inf, np.inf), (0, np.inf), (-
→˓np.inf, np.inf)])
(array([-3, -2, -2, -1, -1, 0, 0, 1, -2, -1, -1, 0, -1]),
array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2]),
array([3, 2, 4, 1, 5, 2, 4, 3, 3, 2, 4, 3, 3]))

grains.utils.non_unique(array, axis=None)
Finds indices of non-unique elements in a 1D or 2D ndarray.

Parameters

• array (ndarray) – Array in which the non-unique elements are searched.

• axis ({None, 0, 1}, optional) – The axis to operate on. If None, array will be flattened.
If an integer, the subarrays indexed by the given axis will be flattened and treated as the
elements of a 1-D array with the dimension of the given axis. Object arrays or structured
arrays that contain objects are not supported if the axis kwarg is used. The default is
None.

Returns

• nonunique_values (list) – Unique (individual, row or column) entries.

• nonunique_indices (list) – Each element of the list corresponds to non-unique elements,
whose indices are given in a 1D numpy array.

Examples

In a 1D array, the repeated values and their indices are found by

>>> val, idx = non_unique(np.array([1, -1, 0, -1, 2, 5, 0, -1]))
>>> val
[-1, 0]
>>> idx
[array([1, 3, 7]), array([2, 6])]

In the matrix below, we can see that rows 0 and 2 are identical, as well as rows 1 and 4.

>>> val, idx = non_unique(np.array([[1, 3], [2, 4], [1, 3], [-1, 0], [2, 4]]),
→˓axis=0)
>>> val
[array([1, 3]), array([2, 4])]
>>> idx
[array([0, 2]), array([1, 4])]

By transposing the matrix above, the same holds for the columns.

>>> val, idx = non_unique(np.array([[1, 2, 1, -1, 2], [3, 4, 3, 0, 4]]), axis=1)
>>> val
[array([1, 3]), array([2, 4])]
>>> idx
[array([0, 2]), array([1, 4])]

If the dimensions along which to find the duplicates are not given, the input is flattened and the indexing happens
in C-order (row-wise).

26.1. Functions 165

CristalX, Release 1.1.0

>>> val, idx = non_unique(np.array([[1, 2, 1, -1, 2], [3, 4, 3, 0, 4]]))
>>> val
[1, 2, 3, 4]
>>> idx
[array([0, 2]), array([1, 4]), array([5, 7]), array([6, 9])]

grains.utils.parse_kwargs(kwargs, defaults)
Compares keyword arguments with defaults.

Allows processing keyword arguments supplied to a function by the user by comparing them with an admissible
set of options defined by the developer. There are three cases:

1. The keyword given by the user is present in the set the developer provides. Then the value
belonging to the keyword overrides the default value.

2. The keyword given by the user is not present in the set the developer provides. In this case, the
unrecognized keyword, along with its value, is saved separately.

3. The keyword existing in the set the developer provides is not given by the user. Then the default
value is used.

Parameters

• kwargs (dict) – Keyword arguments (parameter-value pairs) passed to a function.

• defaults (dict) – Default parameter-value pairs.

Returns

• parsed (dict) – Dictionary with the same keys as defaults, the parsed parameter-value
pairs.

• unknown (dict) – Dictionary containing the parameter-value pairs not present in
defaults.

Notes

The default values, given in the input dictionary defaults, are never overwritten.

Examples

>>> default_options = {'opt1': 1, 'opt2': 'string', 'opt3': [-1, 0]}
>>> user_options = {'opt3': [2, 3, -1], 'opt2': 'string', 'opt4': -2.14}
>>> parsed_options, unknown_options = parse_kwargs(user_options, default_options)
>>> parsed_options
{'opt1': 1, 'opt2': 'string', 'opt3': [2, 3, -1]}
>>> unknown_options
{'opt4': -2.14}

grains.utils.toggle(lst)
Return True for False values and False for True values in a list.

Parameters lst (list) – An arbitrary list, possibly containing other lists.

Returns list – Element-wise logical not operator applied on the input list.

166 Chapter 26. Utilities

CristalX, Release 1.1.0

Notes

Solution taken from https://stackoverflow.com/a/51122372/4892892.

Examples

>>> toggle([True, False])
[False, True]
>>> toggle(['h', 0, 2.3, -2, 5, []])
[False, True, False, False, False, True]

26.1. Functions 167

https://stackoverflow.com/a/51122372/4892892

CristalX, Release 1.1.0

168 Chapter 26. Utilities

CHAPTER

TWENTYSEVEN

PROFILING

This module implements profiling facilities so that user code can be tested for speed.

27.1 Functions

profile([output_format, output_filename, . . .]) Profiles a block of code with Pyinstrument.

27.1.1 grains.profiling.profile

grains.profiling.profile(output_format='html', output_filename=None, html_open=False)
Profiles a block of code with Pyinstrument.

Intended to be used in a with statement.

Parameters

• output_format ({‘html’, ‘text’}, optional) – Shows the result either as text or in an
HTML file. If output_format = 'html', the file is saved according to the
output_filename parameter. The default is ‘html’.

• output_filename (str, optional) – Only taken into account if output_format =
'html'. If not given (default), the html output is saved to the same directory the caller
resides. The name of the html file is the same as that of the caller.

• html_open (bool, optional) – Only taken into account if output_format =
'html'. If True, the generated HTML file is opened in the default browser. The de-
fault is False.

Notes

In the implementation, we move two levels up in the stack frame, one for exiting the context manager and one
for exiting this generator. This assumes that profile() was called as a context manager. As a good practice,
provide the output_filename input argument.

169

CristalX, Release 1.1.0

Examples

Measure the time needed to generate 1 million uniformly distributed random numbers.

>>> import random
>>> with profile('html') as p:
... for _ in range(1000000):
... rand_num = random.uniform(1, 2.2)

grains.profiling.profile(output_format='html', output_filename=None, html_open=False)
Profiles a block of code with Pyinstrument.

Intended to be used in a with statement.

Parameters

• output_format ({‘html’, ‘text’}, optional) – Shows the result either as text or in an
HTML file. If output_format = 'html', the file is saved according to the
output_filename parameter. The default is ‘html’.

• output_filename (str, optional) – Only taken into account if output_format =
'html'. If not given (default), the html output is saved to the same directory the caller
resides. The name of the html file is the same as that of the caller.

• html_open (bool, optional) – Only taken into account if output_format =
'html'. If True, the generated HTML file is opened in the default browser. The de-
fault is False.

Notes

In the implementation, we move two levels up in the stack frame, one for exiting the context manager and one
for exiting this generator. This assumes that profile() was called as a context manager. As a good practice,
provide the output_filename input argument.

Examples

Measure the time needed to generate 1 million uniformly distributed random numbers.

>>> import random
>>> with profile('html') as p:
... for _ in range(1000000):
... rand_num = random.uniform(1, 2.2)

170 Chapter 27. Profiling

CHAPTER

TWENTYEIGHT

INDEX

28.1 Index

171

CristalX, Release 1.1.0

172 Chapter 28. Index

CHAPTER

TWENTYNINE

CHANGELOG

All notable changes to this project will be documented in this file. The format is based on Keep a Changelog, and
this project does not adhere to Semantic Versioning. We refer to GitHub issues by their numbers. If there is no issue
associated to the change, the commit hashes implementing the change are linked.

29.1 Unreleased

29.2 1.1.0 - 2021-03-04

29.2.1 Added

• Grains embedded into other grains are now identified in the splinegon creation algorithm. 4cef7ec, 6c4ad0a

• Computation of the infinitesimal and Green-Lagrange strain tensors for DIC displacement field. 7eaa0b5,
9e5466e

• Computation of the equivalent von Mises strain. 2b9b0be

• Characterization of the strain localization (intergranular/intragranular) in the microstructure. a74f954, 13576f7

• The README file shows how to cite our paper. #30

• Added a new segmented microstructure (6b539ba) and the corresponding DIC measurements (3c845e7).

29.2.2 Deprecated

• The content of dic.DIC.plot_strain will be replaced with that of dic.plot_strain in version 1.3.0.
The latter function will be removed. b8633c2

29.3 1.0.1 - 2020-11-19

29.3.1 Added

• Document on describing the versioning scheme we will follow. e74474c

• Added a changelog to the project. b48821b, f6ca9c1

173

https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html
https://github.com/CsatiZoltan/CristalX/issues
https://github.com/CsatiZoltan/CristalX/commit/4cef7ecbbe4c3fc5cddb9947b29b3d0b454eecb8
https://github.com/CsatiZoltan/CristalX/commit/6c4ad0aff2c4dae49fb648656a94b14436925bed
https://github.com/CsatiZoltan/CristalX/commit/7eaa0b523c0bc7e7a585f955aa8c31206cff751a
https://github.com/CsatiZoltan/CristalX/commit/9e5466ebe1f4ab19defb9e91ff2ed8a961b7044b
https://github.com/CsatiZoltan/CristalX/commit/2b9b0be36cf38f5d1683821573646a65ca541160
https://github.com/CsatiZoltan/CristalX/commit/a74f95424e08d4915ff833e335a2863103da5ca4
https://github.com/CsatiZoltan/CristalX/commit/13576f7ed85f23b9680eecad030229fc4636e50d
https://github.com/CsatiZoltan/CristalX/issues/30
https://github.com/CsatiZoltan/CristalX/commit/6b539ba356bb2e27f6dca4fbc299ca90635d3ab2
https://github.com/CsatiZoltan/CristalX/commit/3c845e7e180a75acb2ea27404d75c308d35ca786
https://github.com/CsatiZoltan/CristalX/commit/b8633c202cff0b8bc7b698cc771473b8d40055a9
https://github.com/CsatiZoltan/CristalX/commit/e74474cb3d1448a1784281f0aa934d3789197662
https://github.com/CsatiZoltan/CristalX/commit/b48821b5e2df5923ba19e5895c20a3ec248815e9
https://github.com/CsatiZoltan/CristalX/commit/f6ca9c1da56a77af5696c1262d78f1184c6b1deb

CristalX, Release 1.1.0

29.3.2 Removed

• The documentation no longer shows the recent git commits. 1fd3a50

29.4 1.0.0 - 2020-11-16

This is the initial release of CristalX.

174 Chapter 29. Changelog

https://github.com/CsatiZoltan/CristalX/commit/1fd3a50930074b0ff79744bf6069af4a211ec0ca

CHAPTER

THIRTY

LICENSE

GNU LESSER GENERAL PUBLIC LICENSE Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/> Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates

the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions
listed below.

0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser

General Public License, and the “GNU GPL” refers to version 3 of the GNU General Public License.

“The Library” refers to a covered work governed by this License,

other than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided

by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library
is deemed a mode of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an

Application with the Library. The particular version of the Library with which the Combined Work was made is also
called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the

Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that,
considered in isolation, are based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the

object code and/or source code for the Application, including any data and utility programs needed for reproducing
the Combined Work from the Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License

without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a

facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument
passed when the facility is invoked), then you may convey a copy of the modified version:

175

https://fsf.org/

CristalX, Release 1.1.0

a) under this License, provided that you make a good faith effort to ensure that, in the event
an Application does not supply the function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of this License applicable to
that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from

a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if
the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros,
inline functions and templates (ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the Library is used in it and
that the Library and its use are covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that,

taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work
and reverse engineering for debugging such modifications, if you also do each of the following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in it
and that the Library and its use are covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during execution, include the copy-
right notice for the Library among these notices, as well as a reference directing the user to
the copies of the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License,
and the Corresponding Application Code in a form suitable for, and under
terms that permit, the user to recombine or relink the Application with a mod-
ified version of the Linked Version to produce a modified Combined Work, in
the manner specified by section 6 of the GNU GPL for conveying Correspond-
ing Source.

1) Use a suitable shared library mechanism for linking with the Library. A
suitable mechanism is one that (a) uses at run time a copy of the Library al-
ready present on the user’s computer system, and (b) will operate properly
with a modified version of the Library that is interface-compatible with the
Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to provide
such information under section 6 of the GNU GPL, and only to the extent that such informa-
tion is necessary to install and execute a modified version of the Combined Work produced by
recombining or relinking the Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany the Minimal Corresponding
Source and Corresponding Application Code. If you use option 4d1, you must provide the
Installation Information in the manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the

176 Chapter 30. License

CristalX, Release 1.1.0

Library side by side in a single library together with other library facilities that are not Applications and are not covered
by this License, and convey such a combined library under terms of your choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities, conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions

of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the

Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License “or any
later version” applies to it, you have the option of following the terms and conditions either of that published version
or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a
version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General
Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide

whether future versions of the GNU Lesser General Public License shall apply, that proxy’s public statement of
acceptance of any version is permanent authorization for you to choose that version for the Library.

177

CristalX, Release 1.1.0

178 Chapter 30. License

PYTHON MODULE INDEX

g
grains.abaqus, 117
grains.analysis, 61
grains.dic, 131
grains.gala_light, 57
grains.geometry, 97
grains.med, 77
grains.meshing, 71
grains.profiling, 169
grains.salome, 81
grains.segmentation, 53
grains.simulation, 145
grains.utils, 153

179

CristalX, Release 1.1.0

180 Python Module Index

INDEX

Symbols
_Geometry__format() (grains.abaqus.Geometry

method), 120
_Material__format() (grains.abaqus.Material

method), 123
_Material__isnumeric()

(grains.abaqus.Material static method),
123

_Procedure__format() (grains.abaqus.Procedure
method), 126

__init__() (grains.abaqus.Geometry method), 117
__init__() (grains.abaqus.Material method), 118
__init__() (grains.abaqus.Procedure method), 119
__init__() (grains.analysis.Analysis method), 61
__init__() (grains.dic.DIC method), 132
__init__() (grains.geometry.Mesh method), 98
__init__() (grains.geometry.Polygon method), 100
__init__() (grains.geometry.TriMesh method), 98
__init__() (grains.meshing.FixedDict method), 72
__init__() (grains.meshing.OOF2 method), 72
__init__() (grains.meshing.QuadSkeletonGeometry

method), 71
__init__() (grains.meshing.SkeletonGeometry

method), 71
__init__() (grains.meshing.TriSkeletonGeometry

method), 72
__init__() (grains.salome.CohesiveZone method),

85
__init__() (grains.salome.Edge method), 83
__init__() (grains.salome.Face method), 83
__init__() (grains.salome.FaceMesh method), 84
__init__() (grains.salome.GUI method), 86
__init__() (grains.salome.Geometry method), 82
__init__() (grains.salome.Interface method), 84
__init__() (grains.salome.InterfaceMesh method),

85
__init__() (grains.salome.Mesh method), 84
__init__() (grains.segmentation.Segmentation

method), 53
_affected_elements()

(grains.salome.CohesiveZone method), 86
_correct_junction_nodes()

(grains.salome.CohesiveZone method), 87
_enrich_interfaces()

(grains.salome.CohesiveZone method), 87
_find_overlapping_edges()

(grains.salome.Geometry method), 91
_generate_cohesive_element()

(grains.salome.CohesiveZone method), 87
_get_component() (grains.salome.GUI class

method), 89
_has_smaller_ID() (grains.salome.Geometry static

method), 91
_ismatrix() (grains.geometry.Mesh static method),

103
_isvector() (grains.geometry.Mesh static method),

103
_polygon_area() (in module grains.geometry), 102,

114

A
add_analysis() (grains.abaqus.Procedure method),

126
add_boundary_condition()

(grains.abaqus.Procedure method), 127
add_linearelastic() (grains.abaqus.Material

method), 123
add_material() (grains.abaqus.Material method),

123
add_plastic() (grains.abaqus.Material method),

123
add_sections() (grains.abaqus.Material static

method), 123
ALL (grains.salome.Mesh.ElementType attribute), 94
Analysis (class in grains.analysis), 61, 65
area() (grains.geometry.Polygon method), 106
argsorted() (in module grains.utils), 155, 160
assert_salome_desktop() (grains.salome.GUI

static method), 90
associate_field() (grains.geometry.Mesh

method), 103

C
cell_area() (grains.geometry.TriMesh method), 109

181

CristalX, Release 1.1.0

cell_set_area() (grains.geometry.TriMesh
method), 109

cell_set_to_mesh() (grains.geometry.TriMesh
method), 109

centroid() (grains.geometry.Polygon method), 106
change_domain() (in module grains.simulation),

146, 148
change_vertex_numbering()

(grains.geometry.TriMesh method), 110
CohesiveZone (class in grains.salome), 85, 86
complement() (in module grains.gala_light), 59
component_map (grains.salome.GUI attribute), 90
compress() (in module grains.utils), 158, 161
compute_properties() (grains.analysis.Analysis

method), 65
create() (grains.abaqus.Material method), 118, 122,

124
create_cell_set() (grains.geometry.Mesh

method), 104
create_cohesive_elements()

(grains.salome.CohesiveZone method), 87
create_interfaces() (grains.salome.Geometry

method), 91
create_material() (grains.meshing.OOF2

method), 73
create_microstructure()

(grains.meshing.OOF2 method), 73
create_skeleton() (grains.meshing.OOF2

method), 73
create_skeleton()

(grains.segmentation.Segmentation method),
54

create_step() (grains.abaqus.Procedure method),
128

create_vertex_set() (grains.geometry.Mesh
method), 104

D
data_Pierre() (in module grains.simulation), 145,

149
decompress() (in module grains.utils), 158, 161
decompress_inmemory() (in module grains.utils),

159, 161
decouple_faces() (grains.salome.CohesiveZone

method), 88
diameter() (grains.geometry.Polygon method), 107
DIC (class in grains.dic), 131, 133
distance_matrix() (in module grains.geometry),

102, 115
duplicates() (in module grains.utils), 153, 161

E
Edge (class in grains.salome), 83, 88
EDGE (grains.salome.Mesh.ElementType attribute), 94

element_edge_normal() (grains.salome.Mesh
method), 94

elements() (grains.salome.FaceMesh method), 89
elements() (grains.salome.InterfaceMesh method),

93
elements_by_nodes()

(grains.salome.InterfaceMesh method), 93
endpoint_nodes() (grains.salome.InterfaceMesh

method), 93
equivalent_strain() (grains.dic.DIC static

method), 133
extract() (in module grains.abaqus), 120, 129
extract_edges() (grains.salome.Geometry

method), 92
extract_faces() (grains.salome.Geometry

method), 92

F
Face (class in grains.salome), 82, 88
FACE (grains.salome.Mesh.ElementType attribute), 94
FaceMesh (class in grains.salome), 84, 89
feret_diameter() (in module grains.analysis), 62,

66
filter_image() (grains.segmentation.Segmentation

method), 54
find_grain_boundaries()

(grains.segmentation.Segmentation method),
54

FixedDict (class in grains.meshing), 72, 73
flatten_list() (in module grains.utils), 155, 162

G
generate() (grains.salome.Mesh method), 94
generate_element_nodes() (grains.salome.Mesh

method), 94
Geometry (class in grains.abaqus), 117, 120
Geometry (class in grains.salome), 82, 91
get_boundary() (grains.geometry.Mesh method),

104
get_edges() (grains.geometry.Mesh method), 105
get_elements() (in module grains.med), 78, 79
get_nodes() (in module grains.med), 78, 80
grains.abaqus (module), 117
grains.analysis (module), 61
grains.dic (module), 131
grains.gala_light (module), 57
grains.geometry (module), 97
grains.med (module), 77
grains.meshing (module), 71
grains.profiling (module), 169
grains.salome (module), 81
grains.segmentation (module), 53
grains.simulation (module), 145
grains.utils (module), 153

182 Index

CristalX, Release 1.1.0

GUI (class in grains.salome), 86, 89
GUI.SalomeNoDesktop, 89

H
hallpetch() (in module grains.simulation), 146, 149
hallpetch_constants() (in module

grains.simulation), 145, 149
hallpetch_plot() (in module grains.simulation),

146, 150
has_desktop() (grains.salome.GUI static method),

90
hminima() (in module grains.gala_light), 58, 59

I
imextendedmin() (in module grains.gala_light), 58,

59
imhmin() (in module grains.gala_light), 58, 59
incident_elements() (grains.salome.Mesh

method), 94
incident_face_mesh() (grains.salome.Mesh

method), 94
index_list() (in module grains.utils), 154, 162
initial_segmentation()

(grains.segmentation.Segmentation method),
54

Interface (class in grains.salome), 83, 92
InterfaceMesh (class in grains.salome), 85, 92
is_collinear() (in module grains.geometry), 101,

115
is_convex() (grains.geometry.Polygon method), 108

L
label_image_apply_mask() (in module

grains.analysis), 65, 66
label_image_skeleton() (in module

grains.analysis), 64, 67
length() (grains.salome.Edge method), 88
length() (grains.salome.Interface method), 92
load() (grains.salome.Geometry method), 92
load_pixelgroups() (grains.meshing.OOF2

method), 73

M
map_inplace() (in module grains.utils), 156, 163
Material (class in grains.abaqus), 118, 122
materials2groups() (grains.meshing.OOF2

method), 74
merge_clusters() (grains.segmentation.Segmentation

method), 55
Mesh (class in grains.geometry), 97, 103
Mesh (class in grains.salome), 84, 93
Mesh.ElementType (class in grains.salome), 93
morphological_reconstruction() (in module

grains.gala_light), 58, 59

N
nature_of_deformation() (in module

grains.simulation), 147, 150
neighborhood() (in module grains.utils), 159, 163
NODE (grains.salome.Mesh.ElementType attribute), 94
nodes() (grains.salome.FaceMesh method), 89
nodes() (grains.salome.InterfaceMesh method), 93
non_unique() (in module grains.utils), 156, 165
nt (in module grains.meshing), 74

O
obtain_face_meshes() (grains.salome.Mesh

method), 95
obtain_interface_meshes()

(grains.salome.Mesh method), 95
one_ring() (grains.salome.Mesh method), 95
OOF2 (class in grains.meshing), 72, 73
orientation() (grains.geometry.Polygon method),

108
original_image (grains.analysis.Analysis attribute),

61, 65
original_image (grains.segmentation.Segmentation

attribute), 53, 54

P
parse_kwargs() (in module grains.utils), 157, 166
pixel2group() (grains.meshing.OOF2 method), 74
plot() (grains.geometry.Polygon method), 108
plot() (grains.geometry.TriMesh method), 110
plot_displacement() (grains.dic.DIC method),

134
plot_field() (grains.geometry.TriMesh method),

111
plot_grain_characteristic() (in module

grains.analysis), 63, 67
plot_options (grains.geometry.Polygon attribute),

109
plot_options (grains.geometry.TriMesh attribute),

113
plot_physicalgrid() (grains.dic.DIC method),

134
plot_pixelgrid() (grains.dic.DIC method), 135
plot_prop() (in module grains.analysis), 63, 68
plot_strain() (grains.dic.DIC method), 135
plot_strain() (in module grains.dic), 132, 143
plot_superimposedmesh() (grains.dic.DIC

method), 135
point_in_element() (grains.salome.Mesh

method), 95
Polygon (class in grains.geometry), 99, 105
Procedure (class in grains.abaqus), 119, 125
profile() (in module grains.profiling), 169, 170
project_onto_grid() (grains.dic.DIC method),

136

Index 183

CristalX, Release 1.1.0

project_onto_mesh() (grains.dic.DIC method),
139

Q
QuadSkeletonGeometry (class in grains.meshing),

71, 74

R
read() (grains.abaqus.Geometry method), 121
read() (grains.abaqus.Material method), 118, 122, 124
read() (grains.abaqus.Procedure method), 128
read_image() (grains.meshing.OOF2 method), 74
read_mesh() (in module grains.med), 77, 80
regional_minima() (in module grains.gala_light),

59
remove() (grains.abaqus.Material method), 118, 122
remove() (grains.abaqus.Material static method), 125
rotate() (grains.geometry.TriMesh method), 113

S
sample_mesh() (grains.geometry.TriMesh static

method), 114
save_array() (grains.segmentation.Segmentation

method), 55
save_image() (grains.segmentation.Segmentation

method), 55
save_location (grains.analysis.Analysis attribute),

61, 65
save_location (grains.segmentation.Segmentation

attribute), 53, 54
save_microstructure() (grains.meshing.OOF2

method), 74
save_pixelgroups() (grains.meshing.OOF2

method), 74
scale() (grains.abaqus.Geometry method), 121
scale() (grains.geometry.TriMesh method), 114
script (grains.meshing.OOF2 attribute), 74
Segmentation (class in grains.segmentation), 53, 54
set_scale() (grains.analysis.Analysis method), 66
set_transformation() (grains.dic.DIC method),

140
show() (grains.abaqus.Material method), 118, 122, 125
show() (grains.abaqus.Procedure method), 129
show() (grains.meshing.OOF2 method), 74
show() (grains.salome.GUI class method), 90
show_grains() (grains.analysis.Analysis method), 66
show_label_image() (in module grains.analysis),

64, 68
show_properties() (grains.analysis.Analysis

method), 66
SkeletonGeometry (class in grains.meshing), 71, 74
squared_distance() (in module grains.geometry),

101, 116
steps (grains.abaqus.Procedure attribute), 119, 126

strain() (grains.dic.DIC method), 142

T
thicken_skeleton() (in module grains.analysis),

65, 68
toggle() (in module grains.utils), 154, 166
TriMesh (class in grains.geometry), 98, 109
TriSkeletonGeometry (class in grains.meshing),

72, 74
truecolor2label() (in module grains.analysis), 69

U
update_object_browser() (grains.salome.GUI

static method), 90

V
validate_file() (in module grains.abaqus), 120,

130
view() (grains.salome.GUI class method), 90

W
watershed_segmentation()

(grains.segmentation.Segmentation method),
55

write() (grains.abaqus.Geometry method), 122
write() (grains.abaqus.Material method), 118, 122,

125
write() (grains.abaqus.Procedure method), 129
write_inp() (grains.geometry.TriMesh method), 114
write_script() (grains.meshing.OOF2 method), 74

184 Index

	CristalX
	Installation
	Documentation
	How to use the codes
	A detailed workflow
	Geometry and mesh processing in Salome
	Processing a .med file
	Algorithms
	Program design
	Coding conventions
	Documentation
	Development
	Contributing
	Versioning
	Segmentation
	Gala
	Analysis
	Meshing
	CAD
	MED
	Salome
	Geometry
	Abaqus
	DIC
	Simulation
	Utilities
	Profiling
	Index
	Changelog
	License
	Python Module Index
	Index

